from sympy.core import Rational, S from sympy.simplify import simplify, trigsimp from sympy.core.function import (Derivative, Function, diff) from sympy.core.numbers import pi from sympy.core.symbol import symbols from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.integrals.integrals import Integral from sympy.matrices.immutable import ImmutableDenseMatrix as Matrix from sympy.vector.vector import Vector, BaseVector, VectorAdd, \ VectorMul, VectorZero from sympy.vector.coordsysrect import CoordSys3D from sympy.vector.vector import Cross, Dot, cross from sympy.testing.pytest import raises C = CoordSys3D('C') i, j, k = C.base_vectors() a, b, c = symbols('a b c') def test_cross(): v1 = C.x * i + C.z * C.z * j v2 = C.x * i + C.y * j + C.z * k assert Cross(v1, v2) == Cross(C.x*C.i + C.z**2*C.j, C.x*C.i + C.y*C.j + C.z*C.k) assert Cross(v1, v2).doit() == C.z**3*C.i + (-C.x*C.z)*C.j + (C.x*C.y - C.x*C.z**2)*C.k assert cross(v1, v2) == C.z**3*C.i + (-C.x*C.z)*C.j + (C.x*C.y - C.x*C.z**2)*C.k assert Cross(v1, v2) == -Cross(v2, v1) assert Cross(v1, v2) + Cross(v2, v1) == Vector.zero def test_dot(): v1 = C.x * i + C.z * C.z * j v2 = C.x * i + C.y * j + C.z * k assert Dot(v1, v2) == Dot(C.x*C.i + C.z**2*C.j, C.x*C.i + C.y*C.j + C.z*C.k) assert Dot(v1, v2).doit() == C.x**2 + C.y*C.z**2 assert Dot(v1, v2).doit() == C.x**2 + C.y*C.z**2 assert Dot(v1, v2) == Dot(v2, v1) def test_vector_sympy(): """ Test whether the Vector framework confirms to the hashing and equality testing properties of SymPy. """ v1 = 3*j assert v1 == j*3 assert v1.components == {j: 3} v2 = 3*i + 4*j + 5*k v3 = 2*i + 4*j + i + 4*k + k assert v3 == v2 assert v3.__hash__() == v2.__hash__() def test_vector(): assert isinstance(i, BaseVector) assert i != j assert j != k assert k != i assert i - i == Vector.zero assert i + Vector.zero == i assert i - Vector.zero == i assert Vector.zero != 0 assert -Vector.zero == Vector.zero v1 = a*i + b*j + c*k v2 = a**2*i + b**2*j + c**2*k v3 = v1 + v2 v4 = 2 * v1 v5 = a * i assert isinstance(v1, VectorAdd) assert v1 - v1 == Vector.zero assert v1 + Vector.zero == v1 assert v1.dot(i) == a assert v1.dot(j) == b assert v1.dot(k) == c assert i.dot(v2) == a**2 assert j.dot(v2) == b**2 assert k.dot(v2) == c**2 assert v3.dot(i) == a**2 + a assert v3.dot(j) == b**2 + b assert v3.dot(k) == c**2 + c assert v1 + v2 == v2 + v1 assert v1 - v2 == -1 * (v2 - v1) assert a * v1 == v1 * a assert isinstance(v5, VectorMul) assert v5.base_vector == i assert v5.measure_number == a assert isinstance(v4, Vector) assert isinstance(v4, VectorAdd) assert isinstance(v4, Vector) assert isinstance(Vector.zero, VectorZero) assert isinstance(Vector.zero, Vector) assert isinstance(v1 * 0, VectorZero) assert v1.to_matrix(C) == Matrix([[a], [b], [c]]) assert i.components == {i: 1} assert v5.components == {i: a} assert v1.components == {i: a, j: b, k: c} assert VectorAdd(v1, Vector.zero) == v1 assert VectorMul(a, v1) == v1*a assert VectorMul(1, i) == i assert VectorAdd(v1, Vector.zero) == v1 assert VectorMul(0, Vector.zero) == Vector.zero raises(TypeError, lambda: v1.outer(1)) raises(TypeError, lambda: v1.dot(1)) def test_vector_magnitude_normalize(): assert Vector.zero.magnitude() == 0 assert Vector.zero.normalize() == Vector.zero assert i.magnitude() == 1 assert j.magnitude() == 1 assert k.magnitude() == 1 assert i.normalize() == i assert j.normalize() == j assert k.normalize() == k v1 = a * i assert v1.normalize() == (a/sqrt(a**2))*i assert v1.magnitude() == sqrt(a**2) v2 = a*i + b*j + c*k assert v2.magnitude() == sqrt(a**2 + b**2 + c**2) assert v2.normalize() == v2 / v2.magnitude() v3 = i + j assert v3.normalize() == (sqrt(2)/2)*C.i + (sqrt(2)/2)*C.j def test_vector_simplify(): A, s, k, m = symbols('A, s, k, m') test1 = (1 / a + 1 / b) * i assert (test1 & i) != (a + b) / (a * b) test1 = simplify(test1) assert (test1 & i) == (a + b) / (a * b) assert test1.simplify() == simplify(test1) test2 = (A**2 * s**4 / (4 * pi * k * m**3)) * i test2 = simplify(test2) assert (test2 & i) == (A**2 * s**4 / (4 * pi * k * m**3)) test3 = ((4 + 4 * a - 2 * (2 + 2 * a)) / (2 + 2 * a)) * i test3 = simplify(test3) assert (test3 & i) == 0 test4 = ((-4 * a * b**2 - 2 * b**3 - 2 * a**2 * b) / (a + b)**2) * i test4 = simplify(test4) assert (test4 & i) == -2 * b v = (sin(a)+cos(a))**2*i - j assert trigsimp(v) == (2*sin(a + pi/4)**2)*i + (-1)*j assert trigsimp(v) == v.trigsimp() assert simplify(Vector.zero) == Vector.zero def test_vector_dot(): assert i.dot(Vector.zero) == 0 assert Vector.zero.dot(i) == 0 assert i & Vector.zero == 0 assert i.dot(i) == 1 assert i.dot(j) == 0 assert i.dot(k) == 0 assert i & i == 1 assert i & j == 0 assert i & k == 0 assert j.dot(i) == 0 assert j.dot(j) == 1 assert j.dot(k) == 0 assert j & i == 0 assert j & j == 1 assert j & k == 0 assert k.dot(i) == 0 assert k.dot(j) == 0 assert k.dot(k) == 1 assert k & i == 0 assert k & j == 0 assert k & k == 1 raises(TypeError, lambda: k.dot(1)) def test_vector_cross(): assert i.cross(Vector.zero) == Vector.zero assert Vector.zero.cross(i) == Vector.zero assert i.cross(i) == Vector.zero assert i.cross(j) == k assert i.cross(k) == -j assert i ^ i == Vector.zero assert i ^ j == k assert i ^ k == -j assert j.cross(i) == -k assert j.cross(j) == Vector.zero assert j.cross(k) == i assert j ^ i == -k assert j ^ j == Vector.zero assert j ^ k == i assert k.cross(i) == j assert k.cross(j) == -i assert k.cross(k) == Vector.zero assert k ^ i == j assert k ^ j == -i assert k ^ k == Vector.zero assert k.cross(1) == Cross(k, 1) def test_projection(): v1 = i + j + k v2 = 3*i + 4*j v3 = 0*i + 0*j assert v1.projection(v1) == i + j + k assert v1.projection(v2) == Rational(7, 3)*C.i + Rational(7, 3)*C.j + Rational(7, 3)*C.k assert v1.projection(v1, scalar=True) == S.One assert v1.projection(v2, scalar=True) == Rational(7, 3) assert v3.projection(v1) == Vector.zero assert v3.projection(v1, scalar=True) == S.Zero def test_vector_diff_integrate(): f = Function('f') v = f(a)*C.i + a**2*C.j - C.k assert Derivative(v, a) == Derivative((f(a))*C.i + a**2*C.j + (-1)*C.k, a) assert (diff(v, a) == v.diff(a) == Derivative(v, a).doit() == (Derivative(f(a), a))*C.i + 2*a*C.j) assert (Integral(v, a) == (Integral(f(a), a))*C.i + (Integral(a**2, a))*C.j + (Integral(-1, a))*C.k) def test_vector_args(): raises(ValueError, lambda: BaseVector(3, C)) raises(TypeError, lambda: BaseVector(0, Vector.zero)) def test_srepr(): from sympy.printing.repr import srepr res = "CoordSys3D(Str('C'), Tuple(ImmutableDenseMatrix([[Integer(1), "\ "Integer(0), Integer(0)], [Integer(0), Integer(1), Integer(0)], "\ "[Integer(0), Integer(0), Integer(1)]]), VectorZero())).i" assert srepr(C.i) == res