# built-in from collections import defaultdict from itertools import zip_longest # app from .base import Base as _Base, BaseSimilarity as _BaseSimilarity try: import numpy except ImportError: numpy = None __all__ = [ 'Hamming', 'MLIPNS', 'Levenshtein', 'DamerauLevenshtein', 'Jaro', 'JaroWinkler', 'StrCmp95', 'NeedlemanWunsch', 'Gotoh', 'SmithWaterman', 'hamming', 'mlipns', 'levenshtein', 'damerau_levenshtein', 'jaro', 'jaro_winkler', 'strcmp95', 'needleman_wunsch', 'gotoh', 'smith_waterman', ] class Hamming(_Base): """ Compute the Hamming distance between the two or more sequences. The Hamming distance is the number of differing items in ordered sequences. https://en.wikipedia.org/wiki/Hamming_distance """ def __init__(self, qval=1, test_func=None, truncate=False, external=True): self.qval = qval self.test_func = test_func or self._ident self.truncate = truncate self.external = external def __call__(self, *sequences): sequences = self._get_sequences(*sequences) result = self.quick_answer(*sequences) if result is not None: return result _zip = zip if self.truncate else zip_longest return sum([not self.test_func(*es) for es in _zip(*sequences)]) class Levenshtein(_Base): """ Compute the absolute Levenshtein distance between the two sequences. The Levenshtein distance is the minimum number of edit operations necessary for transforming one sequence into the other. The edit operations allowed are: * deletion: ABC -> BC, AC, AB * insertion: ABC -> ABCD, EABC, AEBC.. * substitution: ABC -> ABE, ADC, FBC.. https://en.wikipedia.org/wiki/Levenshtein_distance TODO: https://gist.github.com/kylebgorman/1081951/9b38b7743a3cb5167ab2c6608ac8eea7fc629dca """ def __init__(self, qval=1, test_func=None, external=True): self.qval = qval self.test_func = test_func or self._ident self.external = external def _recursive(self, s1, s2): # TODO: more than 2 sequences support if not s1 or not s2: return len(s1) + len(s2) if self.test_func(s1[-1], s2[-1]): return self(s1[:-1], s2[:-1]) # deletion/insertion d = min( self(s1[:-1], s2), self(s1, s2[:-1]), ) # substitution s = self(s1[:-1], s2[:-1]) return min(d, s) + 1 def _cicled(self, s1, s2): """ source: https://github.com/jamesturk/jellyfish/blob/master/jellyfish/_jellyfish.py#L18 """ rows = len(s1) + 1 cols = len(s2) + 1 prev = None if numpy: cur = numpy.arange(cols) else: cur = range(cols) for r in range(1, rows): prev, cur = cur, [r] + [0] * (cols - 1) for c in range(1, cols): deletion = prev[c] + 1 insertion = cur[c - 1] + 1 dist = self.test_func(s1[r - 1], s2[c - 1]) edit = prev[c - 1] + (not dist) cur[c] = min(edit, deletion, insertion) return cur[-1] def __call__(self, s1, s2): s1, s2 = self._get_sequences(s1, s2) result = self.quick_answer(s1, s2) if result is not None: return result return self._cicled(s1, s2) class DamerauLevenshtein(_Base): """ Compute the absolute Damerau-Levenshtein distance between the two sequences. The Damerau-Levenshtein distance is the minimum number of edit operations necessary for transforming one sequence into the other. The edit operations allowed are: * deletion: ABC -> BC, AC, AB * insertion: ABC -> ABCD, EABC, AEBC.. * substitution: ABC -> ABE, ADC, FBC.. * transposition: ABC -> ACB, BAC https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance """ def __init__(self, qval=1, test_func=None, external=True): self.qval = qval self.test_func = test_func or self._ident self.external = external def _numpy(self, s1, s2): # TODO: doesn't pass tests, need improve d = numpy.zeros([len(s1) + 1, len(s2) + 1], dtype=numpy.int) # matrix for i in range(-1, len(s1) + 1): d[i][-1] = i + 1 for j in range(-1, len(s2) + 1): d[-1][j] = j + 1 for i, cs1 in enumerate(s1): for j, cs2 in enumerate(s2): cost = int(not self.test_func(cs1, cs2)) # ^ 0 if equal, 1 otherwise d[i][j] = min( d[i - 1][j] + 1, # deletion d[i][j - 1] + 1, # insertion d[i - 1][j - 1] + cost, # substitution ) # transposition if not i or not j: continue if not self.test_func(cs1, s2[j - 1]): continue d[i][j] = min( d[i][j], d[i - 2][j - 2] + cost, ) return d[len(s1) - 1][len(s2) - 1] def _pure_python(self, s1, s2): """ https://www.guyrutenberg.com/2008/12/15/damerau-levenshtein-distance-in-python/ """ d = {} # matrix for i in range(-1, len(s1) + 1): d[i, -1] = i + 1 for j in range(-1, len(s2) + 1): d[-1, j] = j + 1 for i, cs1 in enumerate(s1): for j, cs2 in enumerate(s2): cost = int(not self.test_func(cs1, cs2)) # ^ 0 if equal, 1 otherwise d[i, j] = min( d[i - 1, j] + 1, # deletion d[i, j - 1] + 1, # insertion d[i - 1, j - 1] + cost, # substitution ) # transposition if not i or not j: continue if not self.test_func(cs1, s2[j - 1]): continue if not self.test_func(s1[i - 1], cs2): continue d[i, j] = min( d[i, j], d[i - 2, j - 2] + cost, ) return d[len(s1) - 1, len(s2) - 1] def __call__(self, s1, s2): s1, s2 = self._get_sequences(s1, s2) result = self.quick_answer(s1, s2) if result is not None: return result # if numpy: # return self._numpy(s1, s2) # else: return self._pure_python(s1, s2) class JaroWinkler(_BaseSimilarity): """ Computes the Jaro-Winkler measure between two strings. The Jaro-Winkler measure is designed to capture cases where two strings have a low Jaro score, but share a prefix. and thus are likely to match. https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance https://github.com/Yomguithereal/talisman/blob/master/src/metrics/distance/jaro.js https://github.com/Yomguithereal/talisman/blob/master/src/metrics/distance/jaro-winkler.js """ def __init__(self, long_tolerance=False, winklerize=True, qval=1, external=True): self.qval = qval self.long_tolerance = long_tolerance self.winklerize = winklerize self.external = external def maximum(self, *sequences): return 1 def __call__(self, s1, s2, prefix_weight=0.1): s1, s2 = self._get_sequences(s1, s2) result = self.quick_answer(s1, s2) if result is not None: return result s1_len = len(s1) s2_len = len(s2) if not s1_len or not s2_len: return 0.0 min_len = max(s1_len, s2_len) search_range = (min_len // 2) - 1 if search_range < 0: search_range = 0 s1_flags = [False] * s1_len s2_flags = [False] * s2_len # looking only within search range, count & flag matched pairs common_chars = 0 for i, s1_ch in enumerate(s1): low = max(0, i - search_range) hi = min(i + search_range, s2_len - 1) for j in range(low, hi + 1): if not s2_flags[j] and s2[j] == s1_ch: s1_flags[i] = s2_flags[j] = True common_chars += 1 break # short circuit if no characters match if not common_chars: return 0.0 # count transpositions k = trans_count = 0 for i, s1_f in enumerate(s1_flags): if s1_f: for j in range(k, s2_len): if s2_flags[j]: k = j + 1 break if s1[i] != s2[j]: trans_count += 1 trans_count //= 2 # adjust for similarities in nonmatched characters weight = common_chars / s1_len + common_chars / s2_len weight += (common_chars - trans_count) / common_chars weight /= 3 # stop to boost if strings are not similar if not self.winklerize: return weight if weight <= 0.7 or s1_len <= 3 or s2_len <= 3: return weight # winkler modification # adjust for up to first 4 chars in common j = min(min_len, 4) i = 0 while i < j and s1[i] == s2[i] and s1[i]: i += 1 if i: weight += i * prefix_weight * (1.0 - weight) # optionally adjust for long strings # after agreeing beginning chars, at least two or more must agree and # agreed characters must be > half of remaining characters if not self.long_tolerance or min_len <= 4: return weight if common_chars <= i + 1 or 2 * common_chars < min_len + i: return weight tmp = (common_chars - i - 1) / (s1_len + s2_len - i * 2 + 2) weight += (1.0 - weight) * tmp return weight class Jaro(JaroWinkler): def __init__(self, long_tolerance=False, qval=1, external=True): super().__init__( long_tolerance=long_tolerance, winklerize=False, qval=qval, external=external, ) class NeedlemanWunsch(_BaseSimilarity): """ Computes the Needleman-Wunsch measure between two strings. The Needleman-Wunsch generalizes the Levenshtein distance and considers global alignment between two strings. Specifically, it is computed by assigning a score to each alignment between two input strings and choosing the score of the best alignment, that is, the maximal score. An alignment between two strings is a set of correspondences between the characters of between them, allowing for gaps. https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm """ positive = False def __init__(self, gap_cost=1.0, sim_func=None, qval=1, external=True): self.qval = qval self.gap_cost = gap_cost if sim_func: self.sim_func = sim_func else: self.sim_func = self._ident self.external = external def minimum(self, *sequences): return -max(map(len, sequences)) * self.gap_cost def maximum(self, *sequences): return max(map(len, sequences)) def distance(self, *sequences): """Get distance between sequences """ return -1 * self.similarity(*sequences) def normalized_distance(self, *sequences): """Get distance from 0 to 1 """ minimum = self.minimum(*sequences) maximum = self.maximum(*sequences) if maximum == 0: return 0 return (self.distance(*sequences) - minimum) / (maximum - minimum) def normalized_similarity(self, *sequences): """Get distance from 0 to 1 """ minimum = self.minimum(*sequences) maximum = self.maximum(*sequences) if maximum == 0: return 1 return (self.similarity(*sequences) - minimum) / (maximum * 2) def __call__(self, s1, s2): if not numpy: raise ImportError('Please, install numpy for Needleman-Wunsch measure') s1, s2 = self._get_sequences(s1, s2) # result = self.quick_answer(s1, s2) # if result is not None: # return result * self.maximum(s1, s2) dist_mat = numpy.zeros( (len(s1) + 1, len(s2) + 1), dtype=numpy.float, ) # DP initialization for i in range(len(s1) + 1): dist_mat[i, 0] = -(i * self.gap_cost) # DP initialization for j in range(len(s2) + 1): dist_mat[0, j] = -(j * self.gap_cost) # Needleman-Wunsch DP calculation for i, c1 in enumerate(s1, 1): for j, c2 in enumerate(s2, 1): match = dist_mat[i - 1, j - 1] + self.sim_func(c1, c2) delete = dist_mat[i - 1, j] - self.gap_cost insert = dist_mat[i, j - 1] - self.gap_cost dist_mat[i, j] = max(match, delete, insert) return dist_mat[dist_mat.shape[0] - 1, dist_mat.shape[1] - 1] class SmithWaterman(_BaseSimilarity): """ Computes the Smith-Waterman measure between two strings. The Smith-Waterman algorithm performs local sequence alignment; that is, for determining similar regions between two strings. Instead of looking at the total sequence, the Smith-Waterman algorithm compares segments of all possible lengths and optimizes the similarity measure. https://en.wikipedia.org/wiki/Smith%E2%80%93Waterman_algorithm https://github.com/Yomguithereal/talisman/blob/master/src/metrics/distance/smith-waterman.js """ def __init__(self, gap_cost=1.0, sim_func=None, qval=1, external=True): self.qval = qval self.gap_cost = gap_cost self.sim_func = sim_func or self._ident self.external = external def maximum(self, *sequences): return min(map(len, sequences)) def __call__(self, s1, s2): if not numpy: raise ImportError('Please, install numpy for Smith-Waterman measure') s1, s2 = self._get_sequences(s1, s2) result = self.quick_answer(s1, s2) if result is not None: return result dist_mat = numpy.zeros( (len(s1) + 1, len(s2) + 1), dtype=numpy.float, ) for i, sc1 in enumerate(s1, start=1): for j, sc2 in enumerate(s2, start=1): # The score for substituting the letter a[i - 1] for b[j - 1]. # Generally low for mismatch, high for match. match = dist_mat[i - 1, j - 1] + self.sim_func(sc1, sc2) # The scores for for introducing extra letters in one of the strings # (or by symmetry, deleting them from the other). delete = dist_mat[i - 1, j] - self.gap_cost insert = dist_mat[i, j - 1] - self.gap_cost dist_mat[i, j] = max(0, match, delete, insert) return dist_mat[dist_mat.shape[0] - 1, dist_mat.shape[1] - 1] class Gotoh(NeedlemanWunsch): """Gotoh score Gotoh's algorithm is essentially Needleman-Wunsch with affine gap penalties: https://www.cs.umd.edu/class/spring2003/cmsc838t/papers/gotoh1982.pdf """ def __init__(self, gap_open=1, gap_ext=0.4, sim_func=None, qval=1, external=True): self.qval = qval self.gap_open = gap_open self.gap_ext = gap_ext if sim_func: self.sim_func = sim_func else: self.sim_func = self._ident self.external = external def minimum(self, *sequences): return -min(map(len, sequences)) def maximum(self, *sequences): return min(map(len, sequences)) def __call__(self, s1, s2): if not numpy: raise ImportError('Please, install numpy for Gotoh measure') s1, s2 = self._get_sequences(s1, s2) # result = self.quick_answer(s1, s2) # if result is not None: # return result * self.maximum(s1, s2) len_s1 = len(s1) len_s2 = len(s2) d_mat = numpy.zeros((len_s1 + 1, len_s2 + 1), dtype=numpy.float) p_mat = numpy.zeros((len_s1 + 1, len_s2 + 1), dtype=numpy.float) q_mat = numpy.zeros((len_s1 + 1, len_s2 + 1), dtype=numpy.float) d_mat[0, 0] = 0 p_mat[0, 0] = float('-inf') q_mat[0, 0] = float('-inf') for i in range(1, len_s1 + 1): d_mat[i, 0] = float('-inf') p_mat[i, 0] = -self.gap_open - self.gap_ext * (i - 1) q_mat[i, 0] = float('-inf') q_mat[i, 1] = -self.gap_open for j in range(1, len_s2 + 1): d_mat[0, j] = float('-inf') p_mat[0, j] = float('-inf') p_mat[1, j] = -self.gap_open q_mat[0, j] = -self.gap_open - self.gap_ext * (j - 1) for i, sc1 in enumerate(s1, start=1): for j, sc2 in enumerate(s2, start=1): sim_val = self.sim_func(sc1, sc2) d_mat[i, j] = max( d_mat[i - 1, j - 1] + sim_val, p_mat[i - 1, j - 1] + sim_val, q_mat[i - 1, j - 1] + sim_val, ) p_mat[i, j] = max( d_mat[i - 1, j] - self.gap_open, p_mat[i - 1, j] - self.gap_ext, ) q_mat[i, j] = max( d_mat[i, j - 1] - self.gap_open, q_mat[i, j - 1] - self.gap_ext, ) i, j = (n - 1 for n in d_mat.shape) return max(d_mat[i, j], p_mat[i, j], q_mat[i, j]) class StrCmp95(_BaseSimilarity): """strcmp95 similarity http://cpansearch.perl.org/src/SCW/Text-JaroWinkler-0.1/strcmp95.c """ sp_mx = ( ('A', 'E'), ('A', 'I'), ('A', 'O'), ('A', 'U'), ('B', 'V'), ('E', 'I'), ('E', 'O'), ('E', 'U'), ('I', 'O'), ('I', 'U'), ('O', 'U'), ('I', 'Y'), ('E', 'Y'), ('C', 'G'), ('E', 'F'), ('W', 'U'), ('W', 'V'), ('X', 'K'), ('S', 'Z'), ('X', 'S'), ('Q', 'C'), ('U', 'V'), ('M', 'N'), ('L', 'I'), ('Q', 'O'), ('P', 'R'), ('I', 'J'), ('2', 'Z'), ('5', 'S'), ('8', 'B'), ('1', 'I'), ('1', 'L'), ('0', 'O'), ('0', 'Q'), ('C', 'K'), ('G', 'J'), ) def __init__(self, long_strings=False, external=True): self.long_strings = long_strings self.external = external def maximum(self, *sequences): return 1 @staticmethod def _in_range(char): return 0 < ord(char) < 91 def __call__(self, s1, s2): s1 = s1.strip().upper() s2 = s2.strip().upper() result = self.quick_answer(s1, s2) if result is not None: return result len_s1 = len(s1) len_s2 = len(s2) adjwt = defaultdict(int) # Initialize the adjwt array on the first call to the function only. # The adjwt array is used to give partial credit for characters that # may be errors due to known phonetic or character recognition errors. # A typical example is to match the letter "O" with the number "0" for c1, c2 in self.sp_mx: adjwt[c1, c2] = 3 adjwt[c2, c1] = 3 if len_s1 > len_s2: search_range = len_s1 minv = len_s2 else: search_range = len_s2 minv = len_s1 # Blank out the flags s1_flag = [0] * search_range s2_flag = [0] * search_range search_range = max(0, search_range // 2 - 1) # Looking only within the search range, count and flag the matched pairs. num_com = 0 yl1 = len_s2 - 1 for i, sc1 in enumerate(s1): lowlim = max(i - search_range, 0) hilim = min(i + search_range, yl1) for j in range(lowlim, hilim + 1): if s2_flag[j] == 0 and s2[j] == sc1: s2_flag[j] = 1 s1_flag[i] = 1 num_com += 1 break # If no characters in common - return if num_com == 0: return 0.0 # Count the number of transpositions k = n_trans = 0 for i, sc1 in enumerate(s1): if not s1_flag[i]: continue for j in range(k, len_s2): if s2_flag[j] != 0: k = j + 1 break if sc1 != s2[j]: n_trans += 1 n_trans = n_trans // 2 # Adjust for similarities in unmatched characters n_simi = 0 if minv > num_com: for i in range(len_s1): if s1_flag[i] != 0: continue if not self._in_range(s1[i]): continue for j in range(len_s2): if s2_flag[j] != 0: continue if not self._in_range(s2[j]): continue if (s1[i], s2[j]) not in adjwt: continue n_simi += adjwt[s1[i], s2[j]] s2_flag[j] = 2 break num_sim = n_simi / 10.0 + num_com # Main weight computation weight = num_sim / len_s1 + num_sim / len_s2 weight += (num_com - n_trans) / num_com weight = weight / 3.0 # Continue to boost the weight if the strings are similar if weight <= 0.7: return weight # Adjust for having up to the first 4 characters in common j = min(minv, 4) i = 0 for sc1, sc2 in zip(s1, s2): if i >= j: break if sc1 != sc2: break if sc1.isdigit(): break i += 1 if i: weight += i * 0.1 * (1.0 - weight) # Optionally adjust for long strings. # After agreeing beginning chars, at least two more must agree and # the agreeing characters must be > .5 of remaining characters. if not self.long_strings: return weight if minv <= 4: return weight if num_com <= i + 1 or 2 * num_com < minv + i: return weight if s1[0].isdigit(): return weight res = (num_com - i - 1) / (len_s1 + len_s2 - i * 2 + 2) weight += (1.0 - weight) * res return weight class MLIPNS(_BaseSimilarity): """ Compute the Hamming distance between the two or more sequences. The Hamming distance is the number of differing items in ordered sequences. http://www.sial.iias.spb.su/files/386-386-1-PB.pdf https://github.com/Yomguithereal/talisman/blob/master/src/metrics/distance/mlipns.js """ def __init__(self, threshold=0.25, maxmismatches=2, qval=1, external=True): self.qval = qval self.threshold = threshold self.maxmismatches = maxmismatches self.external = external def maximum(self, *sequences): return 1 def __call__(self, *sequences): sequences = self._get_sequences(*sequences) result = self.quick_answer(*sequences) if result is not None: return result mismatches = 0 ham = Hamming()(*sequences) maxlen = max(map(len, sequences)) while all(sequences) and mismatches <= self.maxmismatches: if not maxlen: return 1 if 1 - (maxlen - ham) / maxlen <= self.threshold: return 1 mismatches += 1 ham -= 1 maxlen -= 1 if not maxlen: return 1 return 0 hamming = Hamming() levenshtein = Levenshtein() damerau = damerau_levenshtein = DamerauLevenshtein() jaro = Jaro() jaro_winkler = JaroWinkler() needleman_wunsch = NeedlemanWunsch() smith_waterman = SmithWaterman() gotoh = Gotoh() strcmp95 = StrCmp95() mlipns = MLIPNS()