# built-in from functools import reduce from itertools import islice, permutations, repeat from math import log # app from .base import Base as _Base, BaseSimilarity as _BaseSimilarity from .edit_based import DamerauLevenshtein __all__ = [ 'Jaccard', 'Sorensen', 'Tversky', 'Overlap', 'Cosine', 'Tanimoto', 'MongeElkan', 'Bag', 'jaccard', 'sorensen', 'tversky', 'sorensen_dice', 'overlap', 'cosine', 'tanimoto', 'monge_elkan', 'bag', ] class Jaccard(_BaseSimilarity): """ Compute the Jaccard similarity between the two sequences. They should contain hashable items. The return value is a float between 0 and 1, where 1 means equal, and 0 totally different. https://en.wikipedia.org/wiki/Jaccard_index https://github.com/Yomguithereal/talisman/blob/master/src/metrics/distance/jaccard.js """ def __init__(self, qval=1, as_set=False, external=True): self.qval = qval self.as_set = as_set self.external = external def maximum(self, *sequences): return 1 def __call__(self, *sequences): result = self.quick_answer(*sequences) if result is not None: return result sequences = self._get_counters(*sequences) # sets intersection = self._intersect_counters(*sequences) # set intersection = self._count_counters(intersection) # int union = self._union_counters(*sequences) # set union = self._count_counters(union) # int return intersection / union class Sorensen(_BaseSimilarity): """ Compute the Sorensen distance between the two sequences. They should contain hashable items. The return value is a float between 0 and 1, where 0 means equal, and 1 totally different. https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient https://github.com/Yomguithereal/talisman/blob/master/src/metrics/distance/dice.js """ def __init__(self, qval=1, as_set=False, external=True): self.qval = qval self.as_set = as_set self.external = external def maximum(self, *sequences): return 1 def __call__(self, *sequences): result = self.quick_answer(*sequences) if result is not None: return result sequences = self._get_counters(*sequences) # sets count = sum(self._count_counters(s) for s in sequences) intersection = self._intersect_counters(*sequences) # set intersection = self._count_counters(intersection) # int return 2.0 * intersection / count class Tversky(_BaseSimilarity): """Tversky index https://en.wikipedia.org/wiki/Tversky_index https://github.com/Yomguithereal/talisman/blob/master/src/metrics/distance/tversky.js """ def __init__(self, qval=1, ks=None, bias=None, as_set=False, external=True): self.qval = qval self.ks = ks or repeat(1) self.bias = bias self.as_set = as_set self.external = external def maximum(self, *sequences): return 1 def __call__(self, *sequences): result = self.quick_answer(*sequences) if result is not None: return result sequences = self._get_counters(*sequences) # sets intersection = self._intersect_counters(*sequences) # set intersection = self._count_counters(intersection) # int sequences = [self._count_counters(s) for s in sequences] # ints ks = list(islice(self.ks, len(sequences))) if len(sequences) == 2 or self.bias is None: result = intersection for k, s in zip(ks, sequences): result += k * (s - intersection) return intersection / result s1, s2 = sequences alpha, beta = ks a_val = min([s1, s2]) b_val = max([s1, s2]) c_val = intersection + self.bias result = alpha * beta * (a_val - b_val) + b_val * beta return c_val / (result + c_val) class Overlap(_BaseSimilarity): """overlap coefficient https://en.wikipedia.org/wiki/Overlap_coefficient https://github.com/Yomguithereal/talisman/blob/master/src/metrics/distance/overlap.js """ def __init__(self, qval=1, as_set=False, external=True): self.qval = qval self.as_set = as_set self.external = external def maximum(self, *sequences): return 1 def __call__(self, *sequences): result = self.quick_answer(*sequences) if result is not None: return result sequences = self._get_counters(*sequences) # sets intersection = self._intersect_counters(*sequences) # set intersection = self._count_counters(intersection) # int sequences = [self._count_counters(s) for s in sequences] # ints return intersection / min(sequences) class Cosine(_BaseSimilarity): """cosine similarity (Ochiai coefficient) https://en.wikipedia.org/wiki/Cosine_similarity https://github.com/Yomguithereal/talisman/blob/master/src/metrics/distance/cosine.js """ def __init__(self, qval=1, as_set=False, external=True): self.qval = qval self.as_set = as_set self.external = external def maximum(self, *sequences): return 1 def __call__(self, *sequences): result = self.quick_answer(*sequences) if result is not None: return result sequences = self._get_counters(*sequences) # sets intersection = self._intersect_counters(*sequences) # set intersection = self._count_counters(intersection) # int sequences = [self._count_counters(s) for s in sequences] # ints prod = reduce(lambda x, y: x * y, sequences) return intersection / pow(prod, 1.0 / len(sequences)) class Tanimoto(Jaccard): """Tanimoto distance This is identical to the Jaccard similarity coefficient and the Tversky index for alpha=1 and beta=1. """ def __call__(self, *sequences): result = super().__call__(*sequences) if result == 0: return float('-inf') else: return log(result, 2) class MongeElkan(_BaseSimilarity): """ https://www.academia.edu/200314/Generalized_Monge-Elkan_Method_for_Approximate_Text_String_Comparison http://www.cs.cmu.edu/~wcohen/postscript/kdd-2003-match-ws.pdf https://github.com/Yomguithereal/talisman/blob/master/src/metrics/distance/monge-elkan.js """ _damerau_levenshtein = DamerauLevenshtein() def __init__(self, algorithm=_damerau_levenshtein, symmetric=False, qval=1, external=True): self.algorithm = algorithm self.symmetric = symmetric self.qval = qval self.external = external def maximum(self, *sequences): result = self.algorithm.maximum(sequences) for seq in sequences: if seq: result = max(result, self.algorithm.maximum(*seq)) return result def _calc(self, seq, *sequences): if not seq: return 0 maxes = [] for c1 in seq: for s in sequences: max_sim = float('-inf') for c2 in s: max_sim = max(max_sim, self.algorithm.similarity(c1, c2)) maxes.append(max_sim) return sum(maxes) / len(seq) / len(maxes) def __call__(self, *sequences): result = self.quick_answer(*sequences) if result is not None: return result sequences = self._get_sequences(*sequences) if self.symmetric: result = [] for seqs in permutations(sequences): result.append(self._calc(*seqs)) return sum(result) / len(result) else: return self._calc(*sequences) class Bag(_Base): """Bag distance https://github.com/Yomguithereal/talisman/blob/master/src/metrics/distance/bag.js """ def __call__(self, *sequences): sequences = self._get_counters(*sequences) # sets intersection = self._intersect_counters(*sequences) # set sequences = (self._count_counters(sequence - intersection) for sequence in sequences) # ^ ints return max(sequences) bag = Bag() cosine = Cosine() dice = Sorensen() jaccard = Jaccard() monge_elkan = MongeElkan() overlap = Overlap() sorensen = Sorensen() sorensen_dice = Sorensen() # sorensen_dice = Tversky(ks=[.5, .5]) tanimoto = Tanimoto() tversky = Tversky()