""" IMPORTANT: it's just draft """ # built-in from functools import reduce # app from .base import Base as _Base, BaseSimilarity as _BaseSimilarity try: import numpy except ImportError: numpy = None class Chebyshev(_Base): def _numpy(self, s1, s2): s1, s2 = numpy.asarray(s1), numpy.asarray(s2) return max(abs(s1 - s2)) def _pure(self, s1, s2): return max(abs(e1 - e2) for e1, e2 in zip(s1, s2)) def __call__(self, s1, s2): if numpy: return self._numpy(s1, s2) else: return self._pure(s1, s2) class Minkowski(_Base): def __init__(self, p=1, weight=1): if p < 1: raise ValueError('p must be at least 1') self.p = p self.weight = weight def _numpy(self, s1, s2): s1, s2 = numpy.asarray(s1), numpy.asarray(s2) result = (self.weight * abs(s1 - s2)) ** self.p return result.sum() ** (1.0 / self.p) def _pure(self, s1, s2): result = (self.weight * abs(e1 - e2) for e1, e2 in zip(s1, s2)) result = sum(e ** self.p for e in result) return result ** (1.0 / self.p) def __call__(self, s1, s2): if numpy: return self._numpy(s1, s2) else: return self._pure(s1, s2) class Manhattan(_Base): def __call__(self, s1, s2): raise NotImplementedError class Euclidean(_Base): def __init__(self, squared=False): self.squared = squared def _numpy(self, s1, s2): s1 = numpy.asarray(s1) s2 = numpy.asarray(s2) q = numpy.matrix(s1 - s2) result = (q * q.T).sum() if self.squared: return result return numpy.sqrt(result) def _pure(self, s1, s2): raise NotImplementedError def __call__(self, s1, s2): if numpy: return self._numpy(s1, s2) else: return self._pure(s1, s2) class Mahalanobis(_Base): def __call__(self, s1, s2): raise NotImplementedError class Correlation(_BaseSimilarity): def _numpy(self, *sequences): sequences = [numpy.asarray(s) for s in sequences] ssm = [s - s.mean() for s in sequences] result = reduce(numpy.dot, sequences) for sm in ssm: result /= numpy.sqrt(numpy.dot(sm, sm)) return result def _pure(self, *sequences): raise NotImplementedError def __call__(self, *sequences): if numpy: return self._numpy(*sequences) else: return self._pure(*sequences) class Kulsinski(_BaseSimilarity): def __call__(self, s1, s2): raise NotImplementedError