from tqdm import tqdm from .tests_tqdm import StringIO, closing, importorskip, mark, skip pytestmark = mark.slow random = importorskip('numpy.random') rand = random.rand randint = random.randint pd = importorskip('pandas') def test_pandas_setup(): """Test tqdm.pandas()""" with closing(StringIO()) as our_file: tqdm.pandas(file=our_file, leave=True, ascii=True, total=123) series = pd.Series(randint(0, 50, (100,))) series.progress_apply(lambda x: x + 10) res = our_file.getvalue() assert '100/123' in res def test_pandas_rolling_expanding(): """Test pandas.(Series|DataFrame).(rolling|expanding)""" with closing(StringIO()) as our_file: tqdm.pandas(file=our_file, leave=True, ascii=True) series = pd.Series(randint(0, 50, (123,))) res1 = series.rolling(10).progress_apply(lambda x: 1, raw=True) res2 = series.rolling(10).apply(lambda x: 1, raw=True) assert res1.equals(res2) res3 = series.expanding(10).progress_apply(lambda x: 2, raw=True) res4 = series.expanding(10).apply(lambda x: 2, raw=True) assert res3.equals(res4) expects = ['114it'] # 123-10+1 for exres in expects: our_file.seek(0) if our_file.getvalue().count(exres) < 2: our_file.seek(0) raise AssertionError("\nExpected:\n{0}\nIn:\n{1}\n".format( exres + " at least twice.", our_file.read())) def test_pandas_series(): """Test pandas.Series.progress_apply and .progress_map""" with closing(StringIO()) as our_file: tqdm.pandas(file=our_file, leave=True, ascii=True) series = pd.Series(randint(0, 50, (123,))) res1 = series.progress_apply(lambda x: x + 10) res2 = series.apply(lambda x: x + 10) assert res1.equals(res2) res3 = series.progress_map(lambda x: x + 10) res4 = series.map(lambda x: x + 10) assert res3.equals(res4) expects = ['100%', '123/123'] for exres in expects: our_file.seek(0) if our_file.getvalue().count(exres) < 2: our_file.seek(0) raise AssertionError("\nExpected:\n{0}\nIn:\n{1}\n".format( exres + " at least twice.", our_file.read())) def test_pandas_data_frame(): """Test pandas.DataFrame.progress_apply and .progress_applymap""" with closing(StringIO()) as our_file: tqdm.pandas(file=our_file, leave=True, ascii=True) df = pd.DataFrame(randint(0, 50, (100, 200))) def task_func(x): return x + 1 # applymap res1 = df.progress_applymap(task_func) res2 = df.applymap(task_func) assert res1.equals(res2) # apply unhashable res1 = [] df.progress_apply(res1.extend) assert len(res1) == df.size # apply for axis in [0, 1, 'index', 'columns']: res3 = df.progress_apply(task_func, axis=axis) res4 = df.apply(task_func, axis=axis) assert res3.equals(res4) our_file.seek(0) if our_file.read().count('100%') < 3: our_file.seek(0) raise AssertionError("\nExpected:\n{0}\nIn:\n{1}\n".format( '100% at least three times', our_file.read())) # apply_map, apply axis=0, apply axis=1 expects = ['20000/20000', '200/200', '100/100'] for exres in expects: our_file.seek(0) if our_file.getvalue().count(exres) < 1: our_file.seek(0) raise AssertionError("\nExpected:\n{0}\nIn:\n {1}\n".format( exres + " at least once.", our_file.read())) def test_pandas_groupby_apply(): """Test pandas.DataFrame.groupby(...).progress_apply""" with closing(StringIO()) as our_file: tqdm.pandas(file=our_file, leave=False, ascii=True) df = pd.DataFrame(randint(0, 50, (500, 3))) df.groupby(0).progress_apply(lambda x: None) dfs = pd.DataFrame(randint(0, 50, (500, 3)), columns=list('abc')) dfs.groupby(['a']).progress_apply(lambda x: None) df2 = df = pd.DataFrame({'a': randint(1, 8, 10000), 'b': rand(10000)}) res1 = df2.groupby("a").apply(max) res2 = df2.groupby("a").progress_apply(max) assert res1.equals(res2) our_file.seek(0) # don't expect final output since no `leave` and # high dynamic `miniters` nexres = '100%|##########|' if nexres in our_file.read(): our_file.seek(0) raise AssertionError("\nDid not expect:\n{0}\nIn:{1}\n".format( nexres, our_file.read())) with closing(StringIO()) as our_file: tqdm.pandas(file=our_file, leave=True, ascii=True) dfs = pd.DataFrame(randint(0, 50, (500, 3)), columns=list('abc')) dfs.loc[0] = [2, 1, 1] dfs['d'] = 100 expects = ['500/500', '1/1', '4/4', '2/2'] dfs.groupby(dfs.index).progress_apply(lambda x: None) dfs.groupby('d').progress_apply(lambda x: None) dfs.groupby(dfs.columns, axis=1).progress_apply(lambda x: None) dfs.groupby([2, 2, 1, 1], axis=1).progress_apply(lambda x: None) our_file.seek(0) if our_file.read().count('100%') < 4: our_file.seek(0) raise AssertionError("\nExpected:\n{0}\nIn:\n{1}\n".format( '100% at least four times', our_file.read())) for exres in expects: our_file.seek(0) if our_file.getvalue().count(exres) < 1: our_file.seek(0) raise AssertionError("\nExpected:\n{0}\nIn:\n {1}\n".format( exres + " at least once.", our_file.read())) def test_pandas_leave(): """Test pandas with `leave=True`""" with closing(StringIO()) as our_file: df = pd.DataFrame(randint(0, 100, (1000, 6))) tqdm.pandas(file=our_file, leave=True, ascii=True) df.groupby(0).progress_apply(lambda x: None) our_file.seek(0) exres = '100%|##########| 100/100' if exres not in our_file.read(): our_file.seek(0) raise AssertionError("\nExpected:\n{0}\nIn:{1}\n".format( exres, our_file.read())) def test_pandas_apply_args_deprecation(): """Test warning info in `pandas.Dataframe(Series).progress_apply(func, *args)`""" try: from tqdm import tqdm_pandas except ImportError as err: skip(str(err)) with closing(StringIO()) as our_file: tqdm_pandas(tqdm(file=our_file, leave=False, ascii=True, ncols=20)) df = pd.DataFrame(randint(0, 50, (500, 3))) df.progress_apply(lambda x: None, 1) # 1 shall cause a warning # Check deprecation message res = our_file.getvalue() assert all(i in res for i in ( "TqdmDeprecationWarning", "not supported", "keyword arguments instead")) def test_pandas_deprecation(): """Test bar object instance as argument deprecation""" try: from tqdm import tqdm_pandas except ImportError as err: skip(str(err)) with closing(StringIO()) as our_file: tqdm_pandas(tqdm(file=our_file, leave=False, ascii=True, ncols=20)) df = pd.DataFrame(randint(0, 50, (500, 3))) df.groupby(0).progress_apply(lambda x: None) # Check deprecation message assert "TqdmDeprecationWarning" in our_file.getvalue() assert "instead of `tqdm_pandas(tqdm(...))`" in our_file.getvalue() with closing(StringIO()) as our_file: tqdm_pandas(tqdm, file=our_file, leave=False, ascii=True, ncols=20) df = pd.DataFrame(randint(0, 50, (500, 3))) df.groupby(0).progress_apply(lambda x: None) # Check deprecation message assert "TqdmDeprecationWarning" in our_file.getvalue() assert "instead of `tqdm_pandas(tqdm, ...)`" in our_file.getvalue()