# -*- test-case-name: twisted.conch.test.test_transport -*- # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ The lowest level SSH protocol. This handles the key negotiation, the encryption and the compression. The transport layer is described in RFC 4253. Maintainer: Paul Swartz """ import binascii import hmac import struct import zlib from hashlib import md5, sha1, sha256, sha384, sha512 from typing import Dict from cryptography.exceptions import UnsupportedAlgorithm from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import serialization from cryptography.hazmat.primitives.asymmetric import dh, ec, x25519 from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes from twisted import __version__ as twisted_version from twisted.conch.ssh import _kex, address, keys from twisted.conch.ssh.common import MP, NS, ffs, getMP, getNS from twisted.internet import defer, protocol from twisted.logger import Logger from twisted.python import randbytes from twisted.python.compat import iterbytes, networkString # This import is needed if SHA256 hashing is used. # from twisted.python.compat import nativeString def _mpFromBytes(data): """Make an SSH multiple-precision integer from big-endian L{bytes}. Used in ECDH key exchange. @type data: L{bytes} @param data: The input data, interpreted as a big-endian octet string. @rtype: L{bytes} @return: The given data encoded as an SSH multiple-precision integer. """ return MP(int.from_bytes(data, "big")) class _MACParams(tuple): """ L{_MACParams} represents the parameters necessary to compute SSH MAC (Message Authenticate Codes). L{_MACParams} is a L{tuple} subclass to maintain compatibility with older versions of the code. The elements of a L{_MACParams} are:: 0. The digest object used for the MAC 1. The inner pad ("ipad") string 2. The outer pad ("opad") string 3. The size of the digest produced by the digest object L{_MACParams} is also an object lesson in why tuples are a bad type for public APIs. @ivar key: The HMAC key which will be used. """ class SSHCiphers: """ SSHCiphers represents all the encryption operations that need to occur to encrypt and authenticate the SSH connection. @cvar cipherMap: A dictionary mapping SSH encryption names to 3-tuples of (, , ) @cvar macMap: A dictionary mapping SSH MAC names to hash modules. @ivar outCipType: the string type of the outgoing cipher. @ivar inCipType: the string type of the incoming cipher. @ivar outMACType: the string type of the incoming MAC. @ivar inMACType: the string type of the incoming MAC. @ivar encBlockSize: the block size of the outgoing cipher. @ivar decBlockSize: the block size of the incoming cipher. @ivar verifyDigestSize: the size of the incoming MAC. @ivar outMAC: a tuple of (, , , ) representing the outgoing MAC. @ivar inMAc: see outMAC, but for the incoming MAC. """ cipherMap = { b"3des-cbc": (algorithms.TripleDES, 24, modes.CBC), b"blowfish-cbc": (algorithms.Blowfish, 16, modes.CBC), b"aes256-cbc": (algorithms.AES, 32, modes.CBC), b"aes192-cbc": (algorithms.AES, 24, modes.CBC), b"aes128-cbc": (algorithms.AES, 16, modes.CBC), b"cast128-cbc": (algorithms.CAST5, 16, modes.CBC), b"aes128-ctr": (algorithms.AES, 16, modes.CTR), b"aes192-ctr": (algorithms.AES, 24, modes.CTR), b"aes256-ctr": (algorithms.AES, 32, modes.CTR), b"3des-ctr": (algorithms.TripleDES, 24, modes.CTR), b"blowfish-ctr": (algorithms.Blowfish, 16, modes.CTR), b"cast128-ctr": (algorithms.CAST5, 16, modes.CTR), b"none": (None, 0, modes.CBC), } macMap = { b"hmac-sha2-512": sha512, b"hmac-sha2-384": sha384, b"hmac-sha2-256": sha256, b"hmac-sha1": sha1, b"hmac-md5": md5, b"none": None, } def __init__(self, outCip, inCip, outMac, inMac): self.outCipType = outCip self.inCipType = inCip self.outMACType = outMac self.inMACType = inMac self.encBlockSize = 0 self.decBlockSize = 0 self.verifyDigestSize = 0 self.outMAC = (None, b"", b"", 0) self.inMAC = (None, b"", b"", 0) def setKeys(self, outIV, outKey, inIV, inKey, outInteg, inInteg): """ Set up the ciphers and hashes using the given keys, @param outIV: the outgoing initialization vector @param outKey: the outgoing encryption key @param inIV: the incoming initialization vector @param inKey: the incoming encryption key @param outInteg: the outgoing integrity key @param inInteg: the incoming integrity key. """ o = self._getCipher(self.outCipType, outIV, outKey) self.encryptor = o.encryptor() self.encBlockSize = o.algorithm.block_size // 8 o = self._getCipher(self.inCipType, inIV, inKey) self.decryptor = o.decryptor() self.decBlockSize = o.algorithm.block_size // 8 self.outMAC = self._getMAC(self.outMACType, outInteg) self.inMAC = self._getMAC(self.inMACType, inInteg) if self.inMAC: self.verifyDigestSize = self.inMAC[3] def _getCipher(self, cip, iv, key): """ Creates an initialized cipher object. @param cip: the name of the cipher, maps into cipherMap @param iv: the initialzation vector @param key: the encryption key @return: the cipher object. """ algorithmClass, keySize, modeClass = self.cipherMap[cip] if algorithmClass is None: return _DummyCipher() return Cipher( algorithmClass(key[:keySize]), modeClass(iv[: algorithmClass.block_size // 8]), backend=default_backend(), ) def _getMAC(self, mac, key): """ Gets a 4-tuple representing the message authentication code. (, , , ) @type mac: L{bytes} @param mac: a key mapping into macMap @type key: L{bytes} @param key: the MAC key. @rtype: L{bytes} @return: The MAC components. """ mod = self.macMap[mac] if not mod: return (None, b"", b"", 0) # With stdlib we can only get attributes fron an instantiated object. hashObject = mod() digestSize = hashObject.digest_size blockSize = hashObject.block_size # Truncation here appears to contravene RFC 2104, section 2. However, # implementing the hashing behavior prescribed by the RFC breaks # interoperability with OpenSSH (at least version 5.5p1). key = key[:digestSize] + (b"\x00" * (blockSize - digestSize)) i = key.translate(hmac.trans_36) o = key.translate(hmac.trans_5C) result = _MACParams((mod, i, o, digestSize)) result.key = key return result def encrypt(self, blocks): """ Encrypt some data. @type blocks: L{bytes} @param blocks: The data to encrypt. @rtype: L{bytes} @return: The encrypted data. """ return self.encryptor.update(blocks) def decrypt(self, blocks): """ Decrypt some data. @type blocks: L{bytes} @param blocks: The data to decrypt. @rtype: L{bytes} @return: The decrypted data. """ return self.decryptor.update(blocks) def makeMAC(self, seqid, data): """ Create a message authentication code (MAC) for the given packet using the outgoing MAC values. @type seqid: L{int} @param seqid: The sequence ID of the outgoing packet. @type data: L{bytes} @param data: The data to create a MAC for. @rtype: L{str} @return: The serialized MAC. """ if not self.outMAC[0]: return b"" data = struct.pack(">L", seqid) + data return hmac.HMAC(self.outMAC.key, data, self.outMAC[0]).digest() def verify(self, seqid, data, mac): """ Verify an incoming MAC using the incoming MAC values. @type seqid: L{int} @param seqid: The sequence ID of the incoming packet. @type data: L{bytes} @param data: The packet data to verify. @type mac: L{bytes} @param mac: The MAC sent with the packet. @rtype: L{bool} @return: C{True} if the MAC is valid. """ if not self.inMAC[0]: return mac == b"" data = struct.pack(">L", seqid) + data outer = hmac.HMAC(self.inMAC.key, data, self.inMAC[0]).digest() return hmac.compare_digest(mac, outer) def _getSupportedCiphers(): """ Build a list of ciphers that are supported by the backend in use. @return: a list of supported ciphers. @rtype: L{list} of L{str} """ supportedCiphers = [] cs = [ b"aes256-ctr", b"aes256-cbc", b"aes192-ctr", b"aes192-cbc", b"aes128-ctr", b"aes128-cbc", b"cast128-ctr", b"cast128-cbc", b"blowfish-ctr", b"blowfish-cbc", b"3des-ctr", b"3des-cbc", ] for cipher in cs: algorithmClass, keySize, modeClass = SSHCiphers.cipherMap[cipher] try: Cipher( algorithmClass(b" " * keySize), modeClass(b" " * (algorithmClass.block_size // 8)), backend=default_backend(), ).encryptor() except UnsupportedAlgorithm: pass else: supportedCiphers.append(cipher) return supportedCiphers class SSHTransportBase(protocol.Protocol): """ Protocol supporting basic SSH functionality: sending/receiving packets and message dispatch. To connect to or run a server, you must use SSHClientTransport or SSHServerTransport. @ivar protocolVersion: A string representing the version of the SSH protocol we support. Currently defaults to '2.0'. @ivar version: A string representing the version of the server or client. Currently defaults to 'Twisted'. @ivar comment: An optional string giving more information about the server or client. @ivar supportedCiphers: A list of strings representing the encryption algorithms supported, in order from most-preferred to least. @ivar supportedMACs: A list of strings representing the message authentication codes (hashes) supported, in order from most-preferred to least. Both this and supportedCiphers can include 'none' to use no encryption or authentication, but that must be done manually, @ivar supportedKeyExchanges: A list of strings representing the key exchanges supported, in order from most-preferred to least. @ivar supportedPublicKeys: A list of strings representing the public key types supported, in order from most-preferred to least. @ivar supportedCompressions: A list of strings representing compression types supported, from most-preferred to least. @ivar supportedLanguages: A list of strings representing languages supported, from most-preferred to least. @ivar supportedVersions: A container of strings representing supported ssh protocol version numbers. @ivar isClient: A boolean indicating whether this is a client or server. @ivar gotVersion: A boolean indicating whether we have received the version string from the other side. @ivar buf: Data we've received but hasn't been parsed into a packet. @ivar outgoingPacketSequence: the sequence number of the next packet we will send. @ivar incomingPacketSequence: the sequence number of the next packet we are expecting from the other side. @ivar outgoingCompression: an object supporting the .compress(str) and .flush() methods, or None if there is no outgoing compression. Used to compress outgoing data. @ivar outgoingCompressionType: A string representing the outgoing compression type. @ivar incomingCompression: an object supporting the .decompress(str) method, or None if there is no incoming compression. Used to decompress incoming data. @ivar incomingCompressionType: A string representing the incoming compression type. @ivar ourVersionString: the version string that we sent to the other side. Used in the key exchange. @ivar otherVersionString: the version string sent by the other side. Used in the key exchange. @ivar ourKexInitPayload: the MSG_KEXINIT payload we sent. Used in the key exchange. @ivar otherKexInitPayload: the MSG_KEXINIT payload we received. Used in the key exchange @ivar sessionID: a string that is unique to this SSH session. Created as part of the key exchange, sessionID is used to generate the various encryption and authentication keys. @ivar service: an SSHService instance, or None. If it's set to an object, it's the currently running service. @ivar kexAlg: the agreed-upon key exchange algorithm. @ivar keyAlg: the agreed-upon public key type for the key exchange. @ivar currentEncryptions: an SSHCiphers instance. It represents the current encryption and authentication options for the transport. @ivar nextEncryptions: an SSHCiphers instance. Held here until the MSG_NEWKEYS messages are exchanged, when nextEncryptions is transitioned to currentEncryptions. @ivar first: the first bytes of the next packet. In order to avoid decrypting data twice, the first bytes are decrypted and stored until the whole packet is available. @ivar _keyExchangeState: The current protocol state with respect to key exchange. This is either C{_KEY_EXCHANGE_NONE} if no key exchange is in progress (and returns to this value after any key exchange completqes), C{_KEY_EXCHANGE_REQUESTED} if this side of the connection initiated a key exchange, and C{_KEY_EXCHANGE_PROGRESSING} if the other side of the connection initiated a key exchange. C{_KEY_EXCHANGE_NONE} is the initial value (however SSH connections begin with key exchange, so it will quickly change to another state). @ivar _blockedByKeyExchange: Whenever C{_keyExchangeState} is not C{_KEY_EXCHANGE_NONE}, this is a C{list} of pending messages which were passed to L{sendPacket} but could not be sent because it is not legal to send them while a key exchange is in progress. When the key exchange completes, another attempt is made to send these messages. @ivar _peerSupportsExtensions: a boolean indicating whether the other side of the connection supports RFC 8308 extension negotiation. @ivar peerExtensions: a dict of extensions supported by the other side of the connection. """ _log = Logger() protocolVersion = b"2.0" version = b"Twisted_" + twisted_version.encode("ascii") comment = b"" ourVersionString = ( b"SSH-" + protocolVersion + b"-" + version + b" " + comment ).strip() # L{None} is supported as cipher and hmac. For security they are disabled # by default. To enable them, subclass this class and add it, or do: # SSHTransportBase.supportedCiphers.append('none') # List ordered by preference. supportedCiphers = _getSupportedCiphers() supportedMACs = [ b"hmac-sha2-512", b"hmac-sha2-384", b"hmac-sha2-256", b"hmac-sha1", b"hmac-md5", # `none`, ] supportedKeyExchanges = _kex.getSupportedKeyExchanges() supportedPublicKeys = [] # Add the supported EC keys, and change the name from ecdh* to ecdsa* for eckey in supportedKeyExchanges: if eckey.find(b"ecdh") != -1: supportedPublicKeys += [eckey.replace(b"ecdh", b"ecdsa")] supportedPublicKeys += [b"ssh-rsa", b"ssh-dss"] if default_backend().ed25519_supported(): supportedPublicKeys.append(b"ssh-ed25519") supportedCompressions = [b"none", b"zlib"] supportedLanguages = () supportedVersions = (b"1.99", b"2.0") isClient = False gotVersion = False buf = b"" outgoingPacketSequence = 0 incomingPacketSequence = 0 outgoingCompression = None incomingCompression = None sessionID = None service = None # There is no key exchange activity in progress. _KEY_EXCHANGE_NONE = "_KEY_EXCHANGE_NONE" # Key exchange is in progress and we started it. _KEY_EXCHANGE_REQUESTED = "_KEY_EXCHANGE_REQUESTED" # Key exchange is in progress and both sides have sent KEXINIT messages. _KEY_EXCHANGE_PROGRESSING = "_KEY_EXCHANGE_PROGRESSING" # There is a fourth conceptual state not represented here: KEXINIT received # but not sent. Since we always send a KEXINIT as soon as we get it, we # can't ever be in that state. # The current key exchange state. _keyExchangeState = _KEY_EXCHANGE_NONE _blockedByKeyExchange = None # Added to key exchange algorithms by a client to indicate support for # extension negotiation. _EXT_INFO_C = b"ext-info-c" # Added to key exchange algorithms by a server to indicate support for # extension negotiation. _EXT_INFO_S = b"ext-info-s" _peerSupportsExtensions = False peerExtensions: Dict[bytes, bytes] = {} def connectionLost(self, reason): """ When the underlying connection is closed, stop the running service (if any), and log out the avatar (if any). @type reason: L{twisted.python.failure.Failure} @param reason: The cause of the connection being closed. """ if self.service: self.service.serviceStopped() if hasattr(self, "avatar"): self.logoutFunction() self._log.info("connection lost") def connectionMade(self): """ Called when the connection is made to the other side. We sent our version and the MSG_KEXINIT packet. """ self.transport.write(self.ourVersionString + b"\r\n") self.currentEncryptions = SSHCiphers(b"none", b"none", b"none", b"none") self.currentEncryptions.setKeys(b"", b"", b"", b"", b"", b"") self.sendKexInit() def sendKexInit(self): """ Send a I{KEXINIT} message to initiate key exchange or to respond to a key exchange initiated by the peer. @raise RuntimeError: If a key exchange has already been started and it is not appropriate to send a I{KEXINIT} message at this time. @return: L{None} """ if self._keyExchangeState != self._KEY_EXCHANGE_NONE: raise RuntimeError( "Cannot send KEXINIT while key exchange state is %r" % (self._keyExchangeState,) ) supportedKeyExchanges = list(self.supportedKeyExchanges) # Advertise extension negotiation (RFC 8308, section 2.1). At # present, the Conch client processes the "server-sig-algs" # extension (section 3.1), and the Conch server sends that but # ignores any extensions sent by the client, so strictly speaking at # the moment we only need to send this in the client case; however, # there's nothing to forbid the server from sending it as well, and # doing so makes things easier if it needs to process extensions # sent by clients in future. supportedKeyExchanges.append( self._EXT_INFO_C if self.isClient else self._EXT_INFO_S ) self.ourKexInitPayload = b"".join( [ bytes((MSG_KEXINIT,)), randbytes.secureRandom(16), NS(b",".join(supportedKeyExchanges)), NS(b",".join(self.supportedPublicKeys)), NS(b",".join(self.supportedCiphers)), NS(b",".join(self.supportedCiphers)), NS(b",".join(self.supportedMACs)), NS(b",".join(self.supportedMACs)), NS(b",".join(self.supportedCompressions)), NS(b",".join(self.supportedCompressions)), NS(b",".join(self.supportedLanguages)), NS(b",".join(self.supportedLanguages)), b"\000\000\000\000\000", ] ) self.sendPacket(MSG_KEXINIT, self.ourKexInitPayload[1:]) self._keyExchangeState = self._KEY_EXCHANGE_REQUESTED self._blockedByKeyExchange = [] def _allowedKeyExchangeMessageType(self, messageType): """ Determine if the given message type may be sent while key exchange is in progress. @param messageType: The type of message @type messageType: L{int} @return: C{True} if the given type of message may be sent while key exchange is in progress, C{False} if it may not. @rtype: L{bool} @see: U{http://tools.ietf.org/html/rfc4253#section-7.1} """ # Written somewhat peculularly to reflect the way the specification # defines the allowed message types. if 1 <= messageType <= 19: return messageType not in ( MSG_SERVICE_REQUEST, MSG_SERVICE_ACCEPT, MSG_EXT_INFO, ) if 20 <= messageType <= 29: return messageType not in (MSG_KEXINIT,) return 30 <= messageType <= 49 def sendPacket(self, messageType, payload): """ Sends a packet. If it's been set up, compress the data, encrypt it, and authenticate it before sending. If key exchange is in progress and the message is not part of key exchange, queue it to be sent later. @param messageType: The type of the packet; generally one of the MSG_* values. @type messageType: L{int} @param payload: The payload for the message. @type payload: L{str} """ if self._keyExchangeState != self._KEY_EXCHANGE_NONE: if not self._allowedKeyExchangeMessageType(messageType): self._blockedByKeyExchange.append((messageType, payload)) return payload = bytes((messageType,)) + payload if self.outgoingCompression: payload = self.outgoingCompression.compress( payload ) + self.outgoingCompression.flush(2) bs = self.currentEncryptions.encBlockSize # 4 for the packet length and 1 for the padding length totalSize = 5 + len(payload) lenPad = bs - (totalSize % bs) if lenPad < 4: lenPad = lenPad + bs packet = ( struct.pack("!LB", totalSize + lenPad - 4, lenPad) + payload + randbytes.secureRandom(lenPad) ) encPacket = self.currentEncryptions.encrypt( packet ) + self.currentEncryptions.makeMAC(self.outgoingPacketSequence, packet) self.transport.write(encPacket) self.outgoingPacketSequence += 1 def getPacket(self): """ Try to return a decrypted, authenticated, and decompressed packet out of the buffer. If there is not enough data, return None. @rtype: L{str} or L{None} @return: The decoded packet, if any. """ bs = self.currentEncryptions.decBlockSize ms = self.currentEncryptions.verifyDigestSize if len(self.buf) < bs: # Not enough data for a block return if not hasattr(self, "first"): first = self.currentEncryptions.decrypt(self.buf[:bs]) else: first = self.first del self.first packetLen, paddingLen = struct.unpack("!LB", first[:5]) if packetLen > 1048576: # 1024 ** 2 self.sendDisconnect( DISCONNECT_PROTOCOL_ERROR, networkString(f"bad packet length {packetLen}"), ) return if len(self.buf) < packetLen + 4 + ms: # Not enough data for a packet self.first = first return if (packetLen + 4) % bs != 0: self.sendDisconnect( DISCONNECT_PROTOCOL_ERROR, networkString( "bad packet mod (%i%%%i == %i)" % (packetLen + 4, bs, (packetLen + 4) % bs) ), ) return encData, self.buf = self.buf[: 4 + packetLen], self.buf[4 + packetLen :] packet = first + self.currentEncryptions.decrypt(encData[bs:]) if len(packet) != 4 + packetLen: self.sendDisconnect(DISCONNECT_PROTOCOL_ERROR, b"bad decryption") return if ms: macData, self.buf = self.buf[:ms], self.buf[ms:] if not self.currentEncryptions.verify( self.incomingPacketSequence, packet, macData ): self.sendDisconnect(DISCONNECT_MAC_ERROR, b"bad MAC") return payload = packet[5:-paddingLen] if self.incomingCompression: try: payload = self.incomingCompression.decompress(payload) except Exception: # Tolerate any errors in decompression self._log.failure("Error decompressing payload") self.sendDisconnect(DISCONNECT_COMPRESSION_ERROR, b"compression error") return self.incomingPacketSequence += 1 return payload def _unsupportedVersionReceived(self, remoteVersion): """ Called when an unsupported version of the ssh protocol is received from the remote endpoint. @param remoteVersion: remote ssh protocol version which is unsupported by us. @type remoteVersion: L{str} """ self.sendDisconnect( DISCONNECT_PROTOCOL_VERSION_NOT_SUPPORTED, b"bad version " + remoteVersion ) def dataReceived(self, data): """ First, check for the version string (SSH-2.0-*). After that has been received, this method adds data to the buffer, and pulls out any packets. @type data: L{bytes} @param data: The data that was received. """ self.buf = self.buf + data if not self.gotVersion: if len(self.buf) > 4096: self.sendDisconnect( DISCONNECT_CONNECTION_LOST, b"Peer version string longer than 4KB. " b"Preventing a denial of service attack.", ) return if self.buf.find(b"\n", self.buf.find(b"SSH-")) == -1: return # RFC 4253 section 4.2 ask for strict `\r\n` line ending. # Here we are a bit more relaxed and accept implementations ending # only in '\n'. # https://tools.ietf.org/html/rfc4253#section-4.2 lines = self.buf.split(b"\n") for p in lines: if p.startswith(b"SSH-"): self.gotVersion = True # Since the line was split on '\n' and most of the time # it uses '\r\n' we may get an extra '\r'. self.otherVersionString = p.rstrip(b"\r") remoteVersion = p.split(b"-")[1] if remoteVersion not in self.supportedVersions: self._unsupportedVersionReceived(remoteVersion) return i = lines.index(p) self.buf = b"\n".join(lines[i + 1 :]) packet = self.getPacket() while packet: messageNum = ord(packet[0:1]) self.dispatchMessage(messageNum, packet[1:]) packet = self.getPacket() def dispatchMessage(self, messageNum, payload): """ Send a received message to the appropriate method. @type messageNum: L{int} @param messageNum: The message number. @type payload: L{bytes} @param payload: The message payload. """ if messageNum < 50 and messageNum in messages: messageType = messages[messageNum][4:] f = getattr(self, f"ssh_{messageType}", None) if f is not None: f(payload) else: self._log.debug( "couldn't handle {messageType}: {payload!r}", messageType=messageType, payload=payload, ) self.sendUnimplemented() elif self.service: self.service.packetReceived(messageNum, payload) else: self._log.debug( "couldn't handle {messageNum}: {payload!r}", messageNum=messageNum, payload=payload, ) self.sendUnimplemented() def getPeer(self): """ Returns an L{SSHTransportAddress} corresponding to the other (peer) side of this transport. @return: L{SSHTransportAddress} for the peer @rtype: L{SSHTransportAddress} @since: 12.1 """ return address.SSHTransportAddress(self.transport.getPeer()) def getHost(self): """ Returns an L{SSHTransportAddress} corresponding to the this side of transport. @return: L{SSHTransportAddress} for the peer @rtype: L{SSHTransportAddress} @since: 12.1 """ return address.SSHTransportAddress(self.transport.getHost()) @property def kexAlg(self): """ The key exchange algorithm name agreed between client and server. """ return self._kexAlg @kexAlg.setter def kexAlg(self, value): """ Set the key exchange algorithm name. """ self._kexAlg = value # Client-initiated rekeying looks like this: # # C> MSG_KEXINIT # S> MSG_KEXINIT # C> MSG_KEX_DH_GEX_REQUEST or MSG_KEXDH_INIT # S> MSG_KEX_DH_GEX_GROUP or MSG_KEXDH_REPLY # C> MSG_KEX_DH_GEX_INIT or -- # S> MSG_KEX_DH_GEX_REPLY or -- # C> MSG_NEWKEYS # S> MSG_NEWKEYS # # Server-initiated rekeying is the same, only the first two messages are # switched. def ssh_KEXINIT(self, packet): """ Called when we receive a MSG_KEXINIT message. Payload:: bytes[16] cookie string keyExchangeAlgorithms string keyAlgorithms string incomingEncryptions string outgoingEncryptions string incomingAuthentications string outgoingAuthentications string incomingCompressions string outgoingCompressions string incomingLanguages string outgoingLanguages bool firstPacketFollows unit32 0 (reserved) Starts setting up the key exchange, keys, encryptions, and authentications. Extended by ssh_KEXINIT in SSHServerTransport and SSHClientTransport. @type packet: L{bytes} @param packet: The message data. @return: A L{tuple} of negotiated key exchange algorithms, key algorithms, and unhandled data, or L{None} if something went wrong. """ self.otherKexInitPayload = bytes((MSG_KEXINIT,)) + packet # This is useless to us: # cookie = packet[: 16] k = getNS(packet[16:], 10) strings, rest = k[:-1], k[-1] ( kexAlgs, keyAlgs, encCS, encSC, macCS, macSC, compCS, compSC, langCS, langSC, ) = (s.split(b",") for s in strings) # These are the server directions outs = [encSC, macSC, compSC] ins = [encCS, macCS, compCS] if self.isClient: outs, ins = ins, outs # Switch directions server = ( self.supportedKeyExchanges, self.supportedPublicKeys, self.supportedCiphers, self.supportedCiphers, self.supportedMACs, self.supportedMACs, self.supportedCompressions, self.supportedCompressions, ) client = (kexAlgs, keyAlgs, outs[0], ins[0], outs[1], ins[1], outs[2], ins[2]) if self.isClient: server, client = client, server self.kexAlg = ffs(client[0], server[0]) self.keyAlg = ffs(client[1], server[1]) self.nextEncryptions = SSHCiphers( ffs(client[2], server[2]), ffs(client[3], server[3]), ffs(client[4], server[4]), ffs(client[5], server[5]), ) self.outgoingCompressionType = ffs(client[6], server[6]) self.incomingCompressionType = ffs(client[7], server[7]) if ( None in ( self.kexAlg, self.keyAlg, self.outgoingCompressionType, self.incomingCompressionType, ) # We MUST disconnect if an extension negotiation indication ends # up being negotiated as a key exchange method (RFC 8308, # section 2.2). or self.kexAlg in (self._EXT_INFO_C, self._EXT_INFO_S) ): self.sendDisconnect( DISCONNECT_KEY_EXCHANGE_FAILED, b"couldn't match all kex parts" ) return if None in self.nextEncryptions.__dict__.values(): self.sendDisconnect( DISCONNECT_KEY_EXCHANGE_FAILED, b"couldn't match all kex parts" ) return self._peerSupportsExtensions = ( self._EXT_INFO_S if self.isClient else self._EXT_INFO_C ) in kexAlgs self._log.debug( "kex alg={kexAlg!r} key alg={keyAlg!r}", kexAlg=self.kexAlg, keyAlg=self.keyAlg, ) self._log.debug( "outgoing: {cip!r} {mac!r} {compression!r}", cip=self.nextEncryptions.outCipType, mac=self.nextEncryptions.outMACType, compression=self.outgoingCompressionType, ) self._log.debug( "incoming: {cip!r} {mac!r} {compression!r}", cip=self.nextEncryptions.inCipType, mac=self.nextEncryptions.inMACType, compression=self.incomingCompressionType, ) if self._keyExchangeState == self._KEY_EXCHANGE_REQUESTED: self._keyExchangeState = self._KEY_EXCHANGE_PROGRESSING else: self.sendKexInit() return kexAlgs, keyAlgs, rest # For SSHServerTransport to use def ssh_DISCONNECT(self, packet): """ Called when we receive a MSG_DISCONNECT message. Payload:: long code string description This means that the other side has disconnected. Pass the message up and disconnect ourselves. @type packet: L{bytes} @param packet: The message data. """ reasonCode = struct.unpack(">L", packet[:4])[0] description, foo = getNS(packet[4:]) self.receiveError(reasonCode, description) self.transport.loseConnection() def ssh_IGNORE(self, packet): """ Called when we receive a MSG_IGNORE message. No payload. This means nothing; we simply return. @type packet: L{bytes} @param packet: The message data. """ def ssh_UNIMPLEMENTED(self, packet): """ Called when we receive a MSG_UNIMPLEMENTED message. Payload:: long packet This means that the other side did not implement one of our packets. @type packet: L{bytes} @param packet: The message data. """ (seqnum,) = struct.unpack(">L", packet) self.receiveUnimplemented(seqnum) def ssh_DEBUG(self, packet): """ Called when we receive a MSG_DEBUG message. Payload:: bool alwaysDisplay string message string language This means the other side has passed along some debugging info. @type packet: L{bytes} @param packet: The message data. """ alwaysDisplay = bool(ord(packet[0:1])) message, lang, foo = getNS(packet[1:], 2) self.receiveDebug(alwaysDisplay, message, lang) def ssh_EXT_INFO(self, packet): """ Called when we get a MSG_EXT_INFO message. Payload:: uint32 nr-extensions repeat the following 2 fields "nr-extensions" times: string extension-name string extension-value (binary) @type packet: L{bytes} @param packet: The message data. """ (numExtensions,) = struct.unpack(">L", packet[:4]) packet = packet[4:] extensions = {} for _ in range(numExtensions): extName, extValue, packet = getNS(packet, 2) extensions[extName] = extValue self.peerExtensions = extensions def setService(self, service): """ Set our service to service and start it running. If we were running a service previously, stop it first. @type service: C{SSHService} @param service: The service to attach. """ self._log.debug("starting service {service!r}", service=service.name) if self.service: self.service.serviceStopped() self.service = service service.transport = self self.service.serviceStarted() def sendDebug(self, message, alwaysDisplay=False, language=b""): """ Send a debug message to the other side. @param message: the message to send. @type message: L{str} @param alwaysDisplay: if True, tell the other side to always display this message. @type alwaysDisplay: L{bool} @param language: optionally, the language the message is in. @type language: L{str} """ self.sendPacket( MSG_DEBUG, (b"\1" if alwaysDisplay else b"\0") + NS(message) + NS(language) ) def sendIgnore(self, message): """ Send a message that will be ignored by the other side. This is useful to fool attacks based on guessing packet sizes in the encrypted stream. @param message: data to send with the message @type message: L{str} """ self.sendPacket(MSG_IGNORE, NS(message)) def sendUnimplemented(self): """ Send a message to the other side that the last packet was not understood. """ seqnum = self.incomingPacketSequence self.sendPacket(MSG_UNIMPLEMENTED, struct.pack("!L", seqnum)) def sendDisconnect(self, reason, desc): """ Send a disconnect message to the other side and then disconnect. @param reason: the reason for the disconnect. Should be one of the DISCONNECT_* values. @type reason: L{int} @param desc: a descrption of the reason for the disconnection. @type desc: L{str} """ self.sendPacket(MSG_DISCONNECT, struct.pack(">L", reason) + NS(desc) + NS(b"")) self._log.info( "Disconnecting with error, code {code}\nreason: {description}", code=reason, description=desc, ) self.transport.loseConnection() def sendExtInfo(self, extensions): """ Send an RFC 8308 extension advertisement to the remote peer. Nothing is sent if the peer doesn't support negotiations. @type extensions: L{list} of (L{bytes}, L{bytes}) @param extensions: a list of (extension-name, extension-value) pairs. """ if self._peerSupportsExtensions: payload = b"".join( [struct.pack(">L", len(extensions))] + [NS(name) + NS(value) for name, value in extensions] ) self.sendPacket(MSG_EXT_INFO, payload) def _startEphemeralDH(self): """ Prepares for a Diffie-Hellman key agreement exchange. Creates an ephemeral keypair in the group defined by (self.g, self.p) and stores it. """ numbers = dh.DHParameterNumbers(self.p, self.g) parameters = numbers.parameters(default_backend()) self.dhSecretKey = parameters.generate_private_key() y = self.dhSecretKey.public_key().public_numbers().y self.dhSecretKeyPublicMP = MP(y) def _finishEphemeralDH(self, remoteDHpublicKey): """ Completes the Diffie-Hellman key agreement started by _startEphemeralDH, and forgets the ephemeral secret key. @type remoteDHpublicKey: L{int} @rtype: L{bytes} @return: The new shared secret, in SSH C{mpint} format. """ remoteKey = dh.DHPublicNumbers( remoteDHpublicKey, dh.DHParameterNumbers(self.p, self.g) ).public_key(default_backend()) secret = self.dhSecretKey.exchange(remoteKey) del self.dhSecretKey # The result of a Diffie-Hellman exchange is an integer, but # the Cryptography module returns it as bytes in a form that # is only vaguely documented. We fix it up to match the SSH # MP-integer format as described in RFC4251. secret = secret.lstrip(b"\x00") ch = ord(secret[0:1]) if ch & 0x80: # High bit set? # Make room for the sign bit prefix = struct.pack(">L", len(secret) + 1) + b"\x00" else: prefix = struct.pack(">L", len(secret)) return prefix + secret def _getKey(self, c, sharedSecret, exchangeHash): """ Get one of the keys for authentication/encryption. @type c: L{bytes} @param c: The letter identifying which key this is. @type sharedSecret: L{bytes} @param sharedSecret: The shared secret K. @type exchangeHash: L{bytes} @param exchangeHash: The hash H from key exchange. @rtype: L{bytes} @return: The derived key. """ hashProcessor = _kex.getHashProcessor(self.kexAlg) k1 = hashProcessor(sharedSecret + exchangeHash + c + self.sessionID) k1 = k1.digest() k2 = hashProcessor(sharedSecret + exchangeHash + k1).digest() k3 = hashProcessor(sharedSecret + exchangeHash + k1 + k2).digest() k4 = hashProcessor(sharedSecret + exchangeHash + k1 + k2 + k3).digest() return k1 + k2 + k3 + k4 def _keySetup(self, sharedSecret, exchangeHash): """ Set up the keys for the connection and sends MSG_NEWKEYS when finished, @param sharedSecret: a secret string agreed upon using a Diffie- Hellman exchange, so it is only shared between the server and the client. @type sharedSecret: L{str} @param exchangeHash: A hash of various data known by both sides. @type exchangeHash: L{str} """ if not self.sessionID: self.sessionID = exchangeHash initIVCS = self._getKey(b"A", sharedSecret, exchangeHash) initIVSC = self._getKey(b"B", sharedSecret, exchangeHash) encKeyCS = self._getKey(b"C", sharedSecret, exchangeHash) encKeySC = self._getKey(b"D", sharedSecret, exchangeHash) integKeyCS = self._getKey(b"E", sharedSecret, exchangeHash) integKeySC = self._getKey(b"F", sharedSecret, exchangeHash) outs = [initIVSC, encKeySC, integKeySC] ins = [initIVCS, encKeyCS, integKeyCS] if self.isClient: # Reverse for the client outs, ins = ins, outs self.nextEncryptions.setKeys(outs[0], outs[1], ins[0], ins[1], outs[2], ins[2]) self.sendPacket(MSG_NEWKEYS, b"") def _newKeys(self): """ Called back by a subclass once a I{MSG_NEWKEYS} message has been received. This indicates key exchange has completed and new encryption and compression parameters should be adopted. Any messages which were queued during key exchange will also be flushed. """ self._log.debug("NEW KEYS") self.currentEncryptions = self.nextEncryptions if self.outgoingCompressionType == b"zlib": self.outgoingCompression = zlib.compressobj(6) if self.incomingCompressionType == b"zlib": self.incomingCompression = zlib.decompressobj() self._keyExchangeState = self._KEY_EXCHANGE_NONE messages = self._blockedByKeyExchange self._blockedByKeyExchange = None for (messageType, payload) in messages: self.sendPacket(messageType, payload) def isEncrypted(self, direction="out"): """ Check if the connection is encrypted in the given direction. @type direction: L{str} @param direction: The direction: one of 'out', 'in', or 'both'. @rtype: L{bool} @return: C{True} if it is encrypted. """ if direction == "out": return self.currentEncryptions.outCipType != b"none" elif direction == "in": return self.currentEncryptions.inCipType != b"none" elif direction == "both": return self.isEncrypted("in") and self.isEncrypted("out") else: raise TypeError('direction must be "out", "in", or "both"') def isVerified(self, direction="out"): """ Check if the connection is verified/authentication in the given direction. @type direction: L{str} @param direction: The direction: one of 'out', 'in', or 'both'. @rtype: L{bool} @return: C{True} if it is verified. """ if direction == "out": return self.currentEncryptions.outMACType != b"none" elif direction == "in": return self.currentEncryptions.inMACType != b"none" elif direction == "both": return self.isVerified("in") and self.isVerified("out") else: raise TypeError('direction must be "out", "in", or "both"') def loseConnection(self): """ Lose the connection to the other side, sending a DISCONNECT_CONNECTION_LOST message. """ self.sendDisconnect(DISCONNECT_CONNECTION_LOST, b"user closed connection") # Client methods def receiveError(self, reasonCode, description): """ Called when we receive a disconnect error message from the other side. @param reasonCode: the reason for the disconnect, one of the DISCONNECT_ values. @type reasonCode: L{int} @param description: a human-readable description of the disconnection. @type description: L{str} """ self._log.error( "Got remote error, code {code}\nreason: {description}", code=reasonCode, description=description, ) def receiveUnimplemented(self, seqnum): """ Called when we receive an unimplemented packet message from the other side. @param seqnum: the sequence number that was not understood. @type seqnum: L{int} """ self._log.warn("other side unimplemented packet #{seqnum}", seqnum=seqnum) def receiveDebug(self, alwaysDisplay, message, lang): """ Called when we receive a debug message from the other side. @param alwaysDisplay: if True, this message should always be displayed. @type alwaysDisplay: L{bool} @param message: the debug message @type message: L{str} @param lang: optionally the language the message is in. @type lang: L{str} """ if alwaysDisplay: self._log.debug("Remote Debug Message: {message}", message=message) def _generateECPrivateKey(self): """ Generate an private key for ECDH key exchange. @rtype: The appropriate private key type matching C{self.kexAlg}: L{ec.EllipticCurvePrivateKey} for C{ecdh-sha2-nistp*}, or L{x25519.X25519PrivateKey} for C{curve25519-sha256}. @return: The generated private key. """ if self.kexAlg.startswith(b"ecdh-sha2-nistp"): try: curve = keys._curveTable[b"ecdsa" + self.kexAlg[4:]] except KeyError: raise UnsupportedAlgorithm("unused-key") return ec.generate_private_key(curve, default_backend()) elif self.kexAlg in (b"curve25519-sha256", b"curve25519-sha256@libssh.org"): return x25519.X25519PrivateKey.generate() else: raise UnsupportedAlgorithm( "Cannot generate elliptic curve private key for {!r}".format( self.kexAlg ) ) def _encodeECPublicKey(self, ecPub): """ Encode an elliptic curve public key to bytes. @type ecPub: The appropriate public key type matching C{self.kexAlg}: L{ec.EllipticCurvePublicKey} for C{ecdh-sha2-nistp*}, or L{x25519.X25519PublicKey} for C{curve25519-sha256}. @param ecPub: The public key to encode. @rtype: L{bytes} @return: The encoded public key. """ if self.kexAlg.startswith(b"ecdh-sha2-nistp"): return ecPub.public_bytes( serialization.Encoding.X962, serialization.PublicFormat.UncompressedPoint, ) elif self.kexAlg in (b"curve25519-sha256", b"curve25519-sha256@libssh.org"): return ecPub.public_bytes( serialization.Encoding.Raw, serialization.PublicFormat.Raw ) else: raise UnsupportedAlgorithm( f"Cannot encode elliptic curve public key for {self.kexAlg!r}" ) def _generateECSharedSecret(self, ecPriv, theirECPubBytes): """ Generate a shared secret for ECDH key exchange. @type ecPriv: The appropriate private key type matching C{self.kexAlg}: L{ec.EllipticCurvePrivateKey} for C{ecdh-sha2-nistp*}, or L{x25519.X25519PrivateKey} for C{curve25519-sha256}. @param ecPriv: Our private key. @rtype: L{bytes} @return: The generated shared secret, as an SSH multiple-precision integer. """ if self.kexAlg.startswith(b"ecdh-sha2-nistp"): try: curve = keys._curveTable[b"ecdsa" + self.kexAlg[4:]] except KeyError: raise UnsupportedAlgorithm("unused-key") theirECPub = ec.EllipticCurvePublicKey.from_encoded_point( curve, theirECPubBytes ) sharedSecret = ecPriv.exchange(ec.ECDH(), theirECPub) elif self.kexAlg in (b"curve25519-sha256", b"curve25519-sha256@libssh.org"): theirECPub = x25519.X25519PublicKey.from_public_bytes(theirECPubBytes) sharedSecret = ecPriv.exchange(theirECPub) else: raise UnsupportedAlgorithm( "Cannot generate elliptic curve shared secret for {!r}".format( self.kexAlg ) ) return _mpFromBytes(sharedSecret) class SSHServerTransport(SSHTransportBase): """ SSHServerTransport implements the server side of the SSH protocol. @ivar isClient: since we are never the client, this is always False. @ivar ignoreNextPacket: if True, ignore the next key exchange packet. This is set when the client sends a guessed key exchange packet but with an incorrect guess. @ivar dhGexRequest: the KEX_DH_GEX_REQUEST(_OLD) that the client sent. The key generation needs this to be stored. @ivar g: the Diffie-Hellman group generator. @ivar p: the Diffie-Hellman group prime. """ isClient = False ignoreNextPacket = 0 def ssh_KEXINIT(self, packet): """ Called when we receive a MSG_KEXINIT message. For a description of the packet, see SSHTransportBase.ssh_KEXINIT(). Additionally, this method checks if a guessed key exchange packet was sent. If it was sent, and it guessed incorrectly, the next key exchange packet MUST be ignored. """ retval = SSHTransportBase.ssh_KEXINIT(self, packet) if not retval: # Disconnected return else: kexAlgs, keyAlgs, rest = retval if ord(rest[0:1]): # Flag first_kex_packet_follows? if ( kexAlgs[0] != self.supportedKeyExchanges[0] or keyAlgs[0] != self.supportedPublicKeys[0] ): self.ignoreNextPacket = True # Guess was wrong def _ssh_KEX_ECDH_INIT(self, packet): """ Called from L{ssh_KEX_DH_GEX_REQUEST_OLD} to handle elliptic curve key exchanges. Payload:: string client Elliptic Curve Diffie-Hellman public key Just like L{_ssh_KEXDH_INIT} this message type is also not dispatched directly. Extra check to determine if this is really KEX_ECDH_INIT is required. First we load the host's public/private keys. Then we generate the ECDH public/private keypair for the given curve. With that we generate the shared secret key. Then we compute the hash to sign and send back to the client Along with the server's public key and the ECDH public key. @type packet: L{bytes} @param packet: The message data. @return: None. """ # Get the raw client public key. pktPub, packet = getNS(packet) # Get the host's public and private keys pubHostKey = self.factory.publicKeys[self.keyAlg] privHostKey = self.factory.privateKeys[self.keyAlg] # Generate the private key ecPriv = self._generateECPrivateKey() # Get the public key self.ecPub = ecPriv.public_key() encPub = self._encodeECPublicKey(self.ecPub) # Generate the shared secret sharedSecret = self._generateECSharedSecret(ecPriv, pktPub) # Finish update and digest h = _kex.getHashProcessor(self.kexAlg)() h.update(NS(self.otherVersionString)) h.update(NS(self.ourVersionString)) h.update(NS(self.otherKexInitPayload)) h.update(NS(self.ourKexInitPayload)) h.update(NS(pubHostKey.blob())) h.update(NS(pktPub)) h.update(NS(encPub)) h.update(sharedSecret) exchangeHash = h.digest() self.sendPacket( MSG_KEXDH_REPLY, NS(pubHostKey.blob()) + NS(encPub) + NS(privHostKey.sign(exchangeHash)), ) self._keySetup(sharedSecret, exchangeHash) def _ssh_KEXDH_INIT(self, packet): """ Called to handle the beginning of a non-group key exchange. Unlike other message types, this is not dispatched automatically. It is called from C{ssh_KEX_DH_GEX_REQUEST_OLD} because an extra check is required to determine if this is really a KEXDH_INIT message or if it is a KEX_DH_GEX_REQUEST_OLD message. The KEXDH_INIT payload:: integer e (the client's Diffie-Hellman public key) We send the KEXDH_REPLY with our host key and signature. @type packet: L{bytes} @param packet: The message data. """ clientDHpublicKey, foo = getMP(packet) self.g, self.p = _kex.getDHGeneratorAndPrime(self.kexAlg) self._startEphemeralDH() sharedSecret = self._finishEphemeralDH(clientDHpublicKey) h = _kex.getHashProcessor(self.kexAlg)() h.update(NS(self.otherVersionString)) h.update(NS(self.ourVersionString)) h.update(NS(self.otherKexInitPayload)) h.update(NS(self.ourKexInitPayload)) h.update(NS(self.factory.publicKeys[self.keyAlg].blob())) h.update(MP(clientDHpublicKey)) h.update(self.dhSecretKeyPublicMP) h.update(sharedSecret) exchangeHash = h.digest() self.sendPacket( MSG_KEXDH_REPLY, NS(self.factory.publicKeys[self.keyAlg].blob()) + self.dhSecretKeyPublicMP + NS(self.factory.privateKeys[self.keyAlg].sign(exchangeHash)), ) self._keySetup(sharedSecret, exchangeHash) def ssh_KEX_DH_GEX_REQUEST_OLD(self, packet): """ This represents different key exchange methods that share the same integer value. If the message is determined to be a KEXDH_INIT, L{_ssh_KEXDH_INIT} is called to handle it. If it is a KEX_ECDH_INIT, L{_ssh_KEX_ECDH_INIT} is called. Otherwise, for KEX_DH_GEX_REQUEST_OLD payload:: integer ideal (ideal size for the Diffie-Hellman prime) We send the KEX_DH_GEX_GROUP message with the group that is closest in size to ideal. If we were told to ignore the next key exchange packet by ssh_KEXINIT, drop it on the floor and return. @type packet: L{bytes} @param packet: The message data. """ if self.ignoreNextPacket: self.ignoreNextPacket = 0 return # KEXDH_INIT, KEX_ECDH_INIT, and KEX_DH_GEX_REQUEST_OLD # have the same value, so use another cue # to decide what kind of message the peer sent us. if _kex.isFixedGroup(self.kexAlg): return self._ssh_KEXDH_INIT(packet) elif _kex.isEllipticCurve(self.kexAlg): return self._ssh_KEX_ECDH_INIT(packet) else: self.dhGexRequest = packet ideal = struct.unpack(">L", packet)[0] self.g, self.p = self.factory.getDHPrime(ideal) self._startEphemeralDH() self.sendPacket(MSG_KEX_DH_GEX_GROUP, MP(self.p) + MP(self.g)) def ssh_KEX_DH_GEX_REQUEST(self, packet): """ Called when we receive a MSG_KEX_DH_GEX_REQUEST message. Payload:: integer minimum integer ideal integer maximum The client is asking for a Diffie-Hellman group between minimum and maximum size, and close to ideal if possible. We reply with a MSG_KEX_DH_GEX_GROUP message. If we were told to ignore the next key exchange packet by ssh_KEXINIT, drop it on the floor and return. @type packet: L{bytes} @param packet: The message data. """ if self.ignoreNextPacket: self.ignoreNextPacket = 0 return self.dhGexRequest = packet min, ideal, max = struct.unpack(">3L", packet) self.g, self.p = self.factory.getDHPrime(ideal) self._startEphemeralDH() self.sendPacket(MSG_KEX_DH_GEX_GROUP, MP(self.p) + MP(self.g)) def ssh_KEX_DH_GEX_INIT(self, packet): """ Called when we get a MSG_KEX_DH_GEX_INIT message. Payload:: integer e (client DH public key) We send the MSG_KEX_DH_GEX_REPLY message with our host key and signature. @type packet: L{bytes} @param packet: The message data. """ clientDHpublicKey, foo = getMP(packet) # TODO: we should also look at the value they send to us and reject # insecure values of f (if g==2 and f has a single '1' bit while the # rest are '0's, then they must have used a small y also). # TODO: This could be computed when self.p is set up # or do as openssh does and scan f for a single '1' bit instead sharedSecret = self._finishEphemeralDH(clientDHpublicKey) h = _kex.getHashProcessor(self.kexAlg)() h.update(NS(self.otherVersionString)) h.update(NS(self.ourVersionString)) h.update(NS(self.otherKexInitPayload)) h.update(NS(self.ourKexInitPayload)) h.update(NS(self.factory.publicKeys[self.keyAlg].blob())) h.update(self.dhGexRequest) h.update(MP(self.p)) h.update(MP(self.g)) h.update(MP(clientDHpublicKey)) h.update(self.dhSecretKeyPublicMP) h.update(sharedSecret) exchangeHash = h.digest() self.sendPacket( MSG_KEX_DH_GEX_REPLY, NS(self.factory.publicKeys[self.keyAlg].blob()) + self.dhSecretKeyPublicMP + NS(self.factory.privateKeys[self.keyAlg].sign(exchangeHash)), ) self._keySetup(sharedSecret, exchangeHash) def _keySetup(self, sharedSecret, exchangeHash): """ See SSHTransportBase._keySetup(). """ firstKey = self.sessionID is None SSHTransportBase._keySetup(self, sharedSecret, exchangeHash) # RFC 8308 section 2.4 says that the server MAY send EXT_INFO at # zero, one, or both of the following opportunities: the next packet # following the server's first MSG_NEWKEYS, or immediately preceding # the server's MSG_USERAUTH_SUCCESS. We have no need for the # latter, so make sure we only send it in the former case. if firstKey: self.sendExtInfo( [(b"server-sig-algs", b",".join(self.supportedPublicKeys))] ) def ssh_NEWKEYS(self, packet): """ Called when we get a MSG_NEWKEYS message. No payload. When we get this, the keys have been set on both sides, and we start using them to encrypt and authenticate the connection. @type packet: L{bytes} @param packet: The message data. """ if packet != b"": self.sendDisconnect(DISCONNECT_PROTOCOL_ERROR, b"NEWKEYS takes no data") return self._newKeys() def ssh_SERVICE_REQUEST(self, packet): """ Called when we get a MSG_SERVICE_REQUEST message. Payload:: string serviceName The client has requested a service. If we can start the service, start it; otherwise, disconnect with DISCONNECT_SERVICE_NOT_AVAILABLE. @type packet: L{bytes} @param packet: The message data. """ service, rest = getNS(packet) cls = self.factory.getService(self, service) if not cls: self.sendDisconnect( DISCONNECT_SERVICE_NOT_AVAILABLE, b"don't have service " + service ) return else: self.sendPacket(MSG_SERVICE_ACCEPT, NS(service)) self.setService(cls()) class SSHClientTransport(SSHTransportBase): """ SSHClientTransport implements the client side of the SSH protocol. @ivar isClient: since we are always the client, this is always True. @ivar _gotNewKeys: if we receive a MSG_NEWKEYS message before we are ready to transition to the new keys, this is set to True so we can transition when the keys are ready locally. @ivar x: our Diffie-Hellman private key. @ivar e: our Diffie-Hellman public key. @ivar g: the Diffie-Hellman group generator. @ivar p: the Diffie-Hellman group prime @ivar instance: the SSHService object we are requesting. @ivar _dhMinimalGroupSize: Minimal acceptable group size advertised by the client in MSG_KEX_DH_GEX_REQUEST. @type _dhMinimalGroupSize: int @ivar _dhMaximalGroupSize: Maximal acceptable group size advertised by the client in MSG_KEX_DH_GEX_REQUEST. @type _dhMaximalGroupSize: int @ivar _dhPreferredGroupSize: Preferred group size advertised by the client in MSG_KEX_DH_GEX_REQUEST. @type _dhPreferredGroupSize: int """ isClient = True # Recommended minimal and maximal values from RFC 4419, 3. _dhMinimalGroupSize = 1024 _dhMaximalGroupSize = 8192 # FIXME: https://twistedmatrix.com/trac/ticket/8103 # This may need to be more dynamic; compare kexgex_client in # OpenSSH. _dhPreferredGroupSize = 2048 def connectionMade(self): """ Called when the connection is started with the server. Just sets up a private instance variable. """ SSHTransportBase.connectionMade(self) self._gotNewKeys = 0 def ssh_KEXINIT(self, packet): """ Called when we receive a MSG_KEXINIT message. For a description of the packet, see SSHTransportBase.ssh_KEXINIT(). Additionally, this method sends the first key exchange packet. If the agreed-upon exchange is ECDH, generate a key pair for the corresponding curve and send the public key. If the agreed-upon exchange has a fixed prime/generator group, generate a public key and send it in a MSG_KEXDH_INIT message. Otherwise, ask for a 2048 bit group with a MSG_KEX_DH_GEX_REQUEST message. """ if SSHTransportBase.ssh_KEXINIT(self, packet) is None: # Connection was disconnected while doing base processing. # Maybe no common protocols were agreed. return # Are we using ECDH? if _kex.isEllipticCurve(self.kexAlg): # Generate the keys self.ecPriv = self._generateECPrivateKey() self.ecPub = self.ecPriv.public_key() # DH_GEX_REQUEST_OLD is the same number we need. self.sendPacket( MSG_KEX_DH_GEX_REQUEST_OLD, NS(self._encodeECPublicKey(self.ecPub)) ) elif _kex.isFixedGroup(self.kexAlg): # We agreed on a fixed group key exchange algorithm. self.g, self.p = _kex.getDHGeneratorAndPrime(self.kexAlg) self._startEphemeralDH() self.sendPacket(MSG_KEXDH_INIT, self.dhSecretKeyPublicMP) else: # We agreed on a dynamic group. Tell the server what range of # group sizes we accept, and what size we prefer; the server # will then select a group. self.sendPacket( MSG_KEX_DH_GEX_REQUEST, struct.pack( "!LLL", self._dhMinimalGroupSize, self._dhPreferredGroupSize, self._dhMaximalGroupSize, ), ) def _ssh_KEX_ECDH_REPLY(self, packet): """ Called to handle a reply to a ECDH exchange message(KEX_ECDH_INIT). Like the handler for I{KEXDH_INIT}, this message type has an overlapping value. This method is called from C{ssh_KEX_DH_GEX_GROUP} if that method detects a non-group key exchange is in progress. Payload:: string serverHostKey string server Elliptic Curve Diffie-Hellman public key string signature We verify the host key and continue if it passes verificiation. Otherwise raise an exception and return. @type packet: L{bytes} @param packet: The message data. @return: A deferred firing when key exchange is complete. """ def _continue_KEX_ECDH_REPLY(ignored, hostKey, pubKey, signature): # Save off the host public key. theirECHost = hostKey sharedSecret = self._generateECSharedSecret(self.ecPriv, pubKey) h = _kex.getHashProcessor(self.kexAlg)() h.update(NS(self.ourVersionString)) h.update(NS(self.otherVersionString)) h.update(NS(self.ourKexInitPayload)) h.update(NS(self.otherKexInitPayload)) h.update(NS(theirECHost)) h.update(NS(self._encodeECPublicKey(self.ecPub))) h.update(NS(pubKey)) h.update(sharedSecret) exchangeHash = h.digest() if not keys.Key.fromString(theirECHost).verify(signature, exchangeHash): self.sendDisconnect(DISCONNECT_KEY_EXCHANGE_FAILED, b"bad signature") else: self._keySetup(sharedSecret, exchangeHash) # Get the host public key, # the raw ECDH public key bytes and the signature hostKey, pubKey, signature, packet = getNS(packet, 3) # Easier to comment this out for now than to update all of the tests. # fingerprint = nativeString(base64.b64encode( # sha256(hostKey).digest())) fingerprint = b":".join( [binascii.hexlify(ch) for ch in iterbytes(md5(hostKey).digest())] ) d = self.verifyHostKey(hostKey, fingerprint) d.addCallback(_continue_KEX_ECDH_REPLY, hostKey, pubKey, signature) d.addErrback( lambda unused: self.sendDisconnect( DISCONNECT_HOST_KEY_NOT_VERIFIABLE, b"bad host key" ) ) return d def _ssh_KEXDH_REPLY(self, packet): """ Called to handle a reply to a non-group key exchange message (KEXDH_INIT). Like the handler for I{KEXDH_INIT}, this message type has an overlapping value. This method is called from C{ssh_KEX_DH_GEX_GROUP} if that method detects a non-group key exchange is in progress. Payload:: string serverHostKey integer f (server Diffie-Hellman public key) string signature We verify the host key by calling verifyHostKey, then continue in _continueKEXDH_REPLY. @type packet: L{bytes} @param packet: The message data. @return: A deferred firing when key exchange is complete. """ pubKey, packet = getNS(packet) f, packet = getMP(packet) signature, packet = getNS(packet) fingerprint = b":".join( [binascii.hexlify(ch) for ch in iterbytes(md5(pubKey).digest())] ) d = self.verifyHostKey(pubKey, fingerprint) d.addCallback(self._continueKEXDH_REPLY, pubKey, f, signature) d.addErrback( lambda unused: self.sendDisconnect( DISCONNECT_HOST_KEY_NOT_VERIFIABLE, b"bad host key" ) ) return d def ssh_KEX_DH_GEX_GROUP(self, packet): """ This handles different messages which share an integer value. If the key exchange does not have a fixed prime/generator group, we generate a Diffie-Hellman public key and send it in a MSG_KEX_DH_GEX_INIT message. Payload:: string g (group generator) string p (group prime) @type packet: L{bytes} @param packet: The message data. """ if _kex.isFixedGroup(self.kexAlg): return self._ssh_KEXDH_REPLY(packet) elif _kex.isEllipticCurve(self.kexAlg): return self._ssh_KEX_ECDH_REPLY(packet) else: self.p, rest = getMP(packet) self.g, rest = getMP(rest) self._startEphemeralDH() self.sendPacket(MSG_KEX_DH_GEX_INIT, self.dhSecretKeyPublicMP) def _continueKEXDH_REPLY(self, ignored, pubKey, f, signature): """ The host key has been verified, so we generate the keys. @param ignored: Ignored. @param pubKey: the public key blob for the server's public key. @type pubKey: L{str} @param f: the server's Diffie-Hellman public key. @type f: L{int} @param signature: the server's signature, verifying that it has the correct private key. @type signature: L{str} """ serverKey = keys.Key.fromString(pubKey) sharedSecret = self._finishEphemeralDH(f) h = _kex.getHashProcessor(self.kexAlg)() h.update(NS(self.ourVersionString)) h.update(NS(self.otherVersionString)) h.update(NS(self.ourKexInitPayload)) h.update(NS(self.otherKexInitPayload)) h.update(NS(pubKey)) h.update(self.dhSecretKeyPublicMP) h.update(MP(f)) h.update(sharedSecret) exchangeHash = h.digest() if not serverKey.verify(signature, exchangeHash): self.sendDisconnect(DISCONNECT_KEY_EXCHANGE_FAILED, b"bad signature") return self._keySetup(sharedSecret, exchangeHash) def ssh_KEX_DH_GEX_REPLY(self, packet): """ Called when we receive a MSG_KEX_DH_GEX_REPLY message. Payload:: string server host key integer f (server DH public key) We verify the host key by calling verifyHostKey, then continue in _continueGEX_REPLY. @type packet: L{bytes} @param packet: The message data. @return: A deferred firing once key exchange is complete. """ pubKey, packet = getNS(packet) f, packet = getMP(packet) signature, packet = getNS(packet) fingerprint = b":".join( [binascii.hexlify(c) for c in iterbytes(md5(pubKey).digest())] ) d = self.verifyHostKey(pubKey, fingerprint) d.addCallback(self._continueGEX_REPLY, pubKey, f, signature) d.addErrback( lambda unused: self.sendDisconnect( DISCONNECT_HOST_KEY_NOT_VERIFIABLE, b"bad host key" ) ) return d def _continueGEX_REPLY(self, ignored, pubKey, f, signature): """ The host key has been verified, so we generate the keys. @param ignored: Ignored. @param pubKey: the public key blob for the server's public key. @type pubKey: L{str} @param f: the server's Diffie-Hellman public key. @type f: L{int} @param signature: the server's signature, verifying that it has the correct private key. @type signature: L{str} """ serverKey = keys.Key.fromString(pubKey) sharedSecret = self._finishEphemeralDH(f) h = _kex.getHashProcessor(self.kexAlg)() h.update(NS(self.ourVersionString)) h.update(NS(self.otherVersionString)) h.update(NS(self.ourKexInitPayload)) h.update(NS(self.otherKexInitPayload)) h.update(NS(pubKey)) h.update( struct.pack( "!LLL", self._dhMinimalGroupSize, self._dhPreferredGroupSize, self._dhMaximalGroupSize, ) ) h.update(MP(self.p)) h.update(MP(self.g)) h.update(self.dhSecretKeyPublicMP) h.update(MP(f)) h.update(sharedSecret) exchangeHash = h.digest() if not serverKey.verify(signature, exchangeHash): self.sendDisconnect(DISCONNECT_KEY_EXCHANGE_FAILED, b"bad signature") return self._keySetup(sharedSecret, exchangeHash) def _keySetup(self, sharedSecret, exchangeHash): """ See SSHTransportBase._keySetup(). """ SSHTransportBase._keySetup(self, sharedSecret, exchangeHash) if self._gotNewKeys: self.ssh_NEWKEYS(b"") def ssh_NEWKEYS(self, packet): """ Called when we receive a MSG_NEWKEYS message. No payload. If we've finished setting up our own keys, start using them. Otherwise, remember that we've received this message. @type packet: L{bytes} @param packet: The message data. """ if packet != b"": self.sendDisconnect(DISCONNECT_PROTOCOL_ERROR, b"NEWKEYS takes no data") return if not self.nextEncryptions.encBlockSize: self._gotNewKeys = 1 return self._newKeys() self.connectionSecure() def ssh_SERVICE_ACCEPT(self, packet): """ Called when we receive a MSG_SERVICE_ACCEPT message. Payload:: string service name Start the service we requested. @type packet: L{bytes} @param packet: The message data. """ if packet == b"": self._log.info("got SERVICE_ACCEPT without payload") else: name = getNS(packet)[0] if name != self.instance.name: self.sendDisconnect( DISCONNECT_PROTOCOL_ERROR, b"received accept for service we did not request", ) self.setService(self.instance) def requestService(self, instance): """ Request that a service be run over this transport. @type instance: subclass of L{twisted.conch.ssh.service.SSHService} @param instance: The service to run. """ self.sendPacket(MSG_SERVICE_REQUEST, NS(instance.name)) self.instance = instance # Client methods def verifyHostKey(self, hostKey, fingerprint): """ Returns a Deferred that gets a callback if it is a valid key, or an errback if not. @type hostKey: L{bytes} @param hostKey: The host key to verify. @type fingerprint: L{bytes} @param fingerprint: The fingerprint of the key. @return: A deferred firing with C{True} if the key is valid. """ return defer.fail(NotImplementedError()) def connectionSecure(self): """ Called when the encryption has been set up. Generally, requestService() is called to run another service over the transport. """ raise NotImplementedError() class _NullEncryptionContext: """ An encryption context that does not actually encrypt anything. """ def update(self, data): """ 'Encrypt' new data by doing nothing. @type data: L{bytes} @param data: The data to 'encrypt'. @rtype: L{bytes} @return: The 'encrypted' data. """ return data class _DummyAlgorithm: """ An encryption algorithm that does not actually encrypt anything. """ block_size = 64 class _DummyCipher: """ A cipher for the none encryption method. @ivar block_size: the block size of the encryption. In the case of the none cipher, this is 8 bytes. """ algorithm = _DummyAlgorithm() def encryptor(self): """ Construct a noop encryptor. @return: The encryptor. """ return _NullEncryptionContext() def decryptor(self): """ Construct a noop decryptor. @return: The decryptor. """ return _NullEncryptionContext() DH_GENERATOR, DH_PRIME = _kex.getDHGeneratorAndPrime(b"diffie-hellman-group14-sha1") MSG_DISCONNECT = 1 MSG_IGNORE = 2 MSG_UNIMPLEMENTED = 3 MSG_DEBUG = 4 MSG_SERVICE_REQUEST = 5 MSG_SERVICE_ACCEPT = 6 MSG_EXT_INFO = 7 MSG_KEXINIT = 20 MSG_NEWKEYS = 21 MSG_KEXDH_INIT = 30 MSG_KEXDH_REPLY = 31 MSG_KEX_DH_GEX_REQUEST_OLD = 30 MSG_KEX_DH_GEX_REQUEST = 34 MSG_KEX_DH_GEX_GROUP = 31 MSG_KEX_DH_GEX_INIT = 32 MSG_KEX_DH_GEX_REPLY = 33 DISCONNECT_HOST_NOT_ALLOWED_TO_CONNECT = 1 DISCONNECT_PROTOCOL_ERROR = 2 DISCONNECT_KEY_EXCHANGE_FAILED = 3 DISCONNECT_RESERVED = 4 DISCONNECT_MAC_ERROR = 5 DISCONNECT_COMPRESSION_ERROR = 6 DISCONNECT_SERVICE_NOT_AVAILABLE = 7 DISCONNECT_PROTOCOL_VERSION_NOT_SUPPORTED = 8 DISCONNECT_HOST_KEY_NOT_VERIFIABLE = 9 DISCONNECT_CONNECTION_LOST = 10 DISCONNECT_BY_APPLICATION = 11 DISCONNECT_TOO_MANY_CONNECTIONS = 12 DISCONNECT_AUTH_CANCELLED_BY_USER = 13 DISCONNECT_NO_MORE_AUTH_METHODS_AVAILABLE = 14 DISCONNECT_ILLEGAL_USER_NAME = 15 messages = {} for name, value in list(globals().items()): # Avoid legacy messages which overlap with never ones if name.startswith("MSG_") and not name.startswith("MSG_KEXDH_"): messages[value] = name # Check for regressions (#5352) if "MSG_KEXDH_INIT" in messages or "MSG_KEXDH_REPLY" in messages: raise RuntimeError("legacy SSH mnemonics should not end up in messages dict")