import datetime import warnings import numpy as np import pandas as pd from . import dtypes, duck_array_ops, nputils, ops from .arithmetic import DataArrayGroupbyArithmetic, DatasetGroupbyArithmetic from .concat import concat from .formatting import format_array_flat from .indexes import propagate_indexes from .options import _get_keep_attrs from .pycompat import integer_types from .utils import ( either_dict_or_kwargs, hashable, is_scalar, maybe_wrap_array, peek_at, safe_cast_to_index, ) from .variable import IndexVariable, Variable, as_variable def check_reduce_dims(reduce_dims, dimensions): if reduce_dims is not ...: if is_scalar(reduce_dims): reduce_dims = [reduce_dims] if any(dim not in dimensions for dim in reduce_dims): raise ValueError( f"cannot reduce over dimensions {reduce_dims!r}. expected either '...' " f"to reduce over all dimensions or one or more of {dimensions!r}." ) def unique_value_groups(ar, sort=True): """Group an array by its unique values. Parameters ---------- ar : array-like Input array. This will be flattened if it is not already 1-D. sort : bool, optional Whether or not to sort unique values. Returns ------- values : np.ndarray Sorted, unique values as returned by `np.unique`. indices : list of lists of int Each element provides the integer indices in `ar` with values given by the corresponding value in `unique_values`. """ inverse, values = pd.factorize(ar, sort=sort) groups = [[] for _ in range(len(values))] for n, g in enumerate(inverse): if g >= 0: # pandas uses -1 to mark NaN, but doesn't include them in values groups[g].append(n) return values, groups def _dummy_copy(xarray_obj): from .dataarray import DataArray from .dataset import Dataset if isinstance(xarray_obj, Dataset): res = Dataset( { k: dtypes.get_fill_value(v.dtype) for k, v in xarray_obj.data_vars.items() }, { k: dtypes.get_fill_value(v.dtype) for k, v in xarray_obj.coords.items() if k not in xarray_obj.dims }, xarray_obj.attrs, ) elif isinstance(xarray_obj, DataArray): res = DataArray( dtypes.get_fill_value(xarray_obj.dtype), { k: dtypes.get_fill_value(v.dtype) for k, v in xarray_obj.coords.items() if k not in xarray_obj.dims }, dims=[], name=xarray_obj.name, attrs=xarray_obj.attrs, ) else: # pragma: no cover raise AssertionError return res def _is_one_or_none(obj): return obj == 1 or obj is None def _consolidate_slices(slices): """Consolidate adjacent slices in a list of slices.""" result = [] last_slice = slice(None) for slice_ in slices: if not isinstance(slice_, slice): raise ValueError(f"list element is not a slice: {slice_!r}") if ( result and last_slice.stop == slice_.start and _is_one_or_none(last_slice.step) and _is_one_or_none(slice_.step) ): last_slice = slice(last_slice.start, slice_.stop, slice_.step) result[-1] = last_slice else: result.append(slice_) last_slice = slice_ return result def _inverse_permutation_indices(positions): """Like inverse_permutation, but also handles slices. Parameters ---------- positions : list of ndarray or slice If slice objects, all are assumed to be slices. Returns ------- np.ndarray of indices or None, if no permutation is necessary. """ if not positions: return None if isinstance(positions[0], slice): positions = _consolidate_slices(positions) if positions == slice(None): return None positions = [np.arange(sl.start, sl.stop, sl.step) for sl in positions] return nputils.inverse_permutation(np.concatenate(positions)) class _DummyGroup: """Class for keeping track of grouped dimensions without coordinates. Should not be user visible. """ __slots__ = ("name", "coords", "size") def __init__(self, obj, name, coords): self.name = name self.coords = coords self.size = obj.sizes[name] @property def dims(self): return (self.name,) @property def ndim(self): return 1 @property def values(self): return range(self.size) @property def shape(self): return (self.size,) def __getitem__(self, key): if isinstance(key, tuple): key = key[0] return self.values[key] def _ensure_1d(group, obj): if group.ndim != 1: # try to stack the dims of the group into a single dim orig_dims = group.dims stacked_dim = "stacked_" + "_".join(orig_dims) # these dimensions get created by the stack operation inserted_dims = [dim for dim in group.dims if dim not in group.coords] # the copy is necessary here, otherwise read only array raises error # in pandas: https://github.com/pydata/pandas/issues/12813 group = group.stack(**{stacked_dim: orig_dims}).copy() obj = obj.stack(**{stacked_dim: orig_dims}) else: stacked_dim = None inserted_dims = [] return group, obj, stacked_dim, inserted_dims def _unique_and_monotonic(group): if isinstance(group, _DummyGroup): return True index = safe_cast_to_index(group) return index.is_unique and index.is_monotonic def _apply_loffset(grouper, result): """ (copied from pandas) if loffset is set, offset the result index This is NOT an idempotent routine, it will be applied exactly once to the result. Parameters ---------- result : Series or DataFrame the result of resample """ needs_offset = ( isinstance(grouper.loffset, (pd.DateOffset, datetime.timedelta)) and isinstance(result.index, pd.DatetimeIndex) and len(result.index) > 0 ) if needs_offset: result.index = result.index + grouper.loffset grouper.loffset = None class GroupBy: """A object that implements the split-apply-combine pattern. Modeled after `pandas.GroupBy`. The `GroupBy` object can be iterated over (unique_value, grouped_array) pairs, but the main way to interact with a groupby object are with the `apply` or `reduce` methods. You can also directly call numpy methods like `mean` or `std`. You should create a GroupBy object by using the `DataArray.groupby` or `Dataset.groupby` methods. See Also -------- Dataset.groupby DataArray.groupby """ __slots__ = ( "_full_index", "_inserted_dims", "_group", "_group_dim", "_group_indices", "_groups", "_obj", "_restore_coord_dims", "_stacked_dim", "_unique_coord", "_dims", ) def __init__( self, obj, group, squeeze=False, grouper=None, bins=None, restore_coord_dims=True, cut_kwargs=None, ): """Create a GroupBy object Parameters ---------- obj : Dataset or DataArray Object to group. group : DataArray Array with the group values. squeeze : bool, optional If "group" is a coordinate of object, `squeeze` controls whether the subarrays have a dimension of length 1 along that coordinate or if the dimension is squeezed out. grouper : pandas.Grouper, optional Used for grouping values along the `group` array. bins : array-like, optional If `bins` is specified, the groups will be discretized into the specified bins by `pandas.cut`. restore_coord_dims : bool, default: True If True, also restore the dimension order of multi-dimensional coordinates. cut_kwargs : dict, optional Extra keyword arguments to pass to `pandas.cut` """ if cut_kwargs is None: cut_kwargs = {} from .dataarray import DataArray if grouper is not None and bins is not None: raise TypeError("can't specify both `grouper` and `bins`") if not isinstance(group, (DataArray, IndexVariable)): if not hashable(group): raise TypeError( "`group` must be an xarray.DataArray or the " "name of an xarray variable or dimension." f"Received {group!r} instead." ) group = obj[group] if len(group) == 0: raise ValueError(f"{group.name} must not be empty") if group.name not in obj.coords and group.name in obj.dims: # DummyGroups should not appear on groupby results group = _DummyGroup(obj, group.name, group.coords) if getattr(group, "name", None) is None: group.name = "group" group, obj, stacked_dim, inserted_dims = _ensure_1d(group, obj) (group_dim,) = group.dims expected_size = obj.sizes[group_dim] if group.size != expected_size: raise ValueError( "the group variable's length does not " "match the length of this variable along its " "dimension" ) full_index = None if bins is not None: if duck_array_ops.isnull(bins).all(): raise ValueError("All bin edges are NaN.") binned = pd.cut(group.values, bins, **cut_kwargs) new_dim_name = group.name + "_bins" group = DataArray(binned, group.coords, name=new_dim_name) full_index = binned.categories if grouper is not None: index = safe_cast_to_index(group) if not index.is_monotonic: # TODO: sort instead of raising an error raise ValueError("index must be monotonic for resampling") full_index, first_items = self._get_index_and_items(index, grouper) sbins = first_items.values.astype(np.int64) group_indices = [slice(i, j) for i, j in zip(sbins[:-1], sbins[1:])] + [ slice(sbins[-1], None) ] unique_coord = IndexVariable(group.name, first_items.index) elif group.dims == (group.name,) and _unique_and_monotonic(group): # no need to factorize group_indices = np.arange(group.size) if not squeeze: # use slices to do views instead of fancy indexing # equivalent to: group_indices = group_indices.reshape(-1, 1) group_indices = [slice(i, i + 1) for i in group_indices] unique_coord = group else: if group.isnull().any(): # drop any NaN valued groups. # also drop obj values where group was NaN # Use where instead of reindex to account for duplicate coordinate labels. obj = obj.where(group.notnull(), drop=True) group = group.dropna(group_dim) # look through group to find the unique values group_as_index = safe_cast_to_index(group) sort = bins is None and (not isinstance(group_as_index, pd.MultiIndex)) unique_values, group_indices = unique_value_groups( group_as_index, sort=sort ) unique_coord = IndexVariable(group.name, unique_values) if len(group_indices) == 0: if bins is not None: raise ValueError( f"None of the data falls within bins with edges {bins!r}" ) else: raise ValueError( "Failed to group data. Are you grouping by a variable that is all NaN?" ) # specification for the groupby operation self._obj = obj self._group = group self._group_dim = group_dim self._group_indices = group_indices self._unique_coord = unique_coord self._stacked_dim = stacked_dim self._inserted_dims = inserted_dims self._full_index = full_index self._restore_coord_dims = restore_coord_dims # cached attributes self._groups = None self._dims = None @property def dims(self): if self._dims is None: self._dims = self._obj.isel( **{self._group_dim: self._group_indices[0]} ).dims return self._dims @property def groups(self): """ Mapping from group labels to indices. The indices can be used to index the underlying object. """ # provided to mimic pandas.groupby if self._groups is None: self._groups = dict(zip(self._unique_coord.values, self._group_indices)) return self._groups def __getitem__(self, key): """ Get DataArray or Dataset corresponding to a particular group label. """ return self._obj.isel({self._group_dim: self.groups[key]}) def __len__(self): return self._unique_coord.size def __iter__(self): return zip(self._unique_coord.values, self._iter_grouped()) def __repr__(self): return "{}, grouped over {!r}\n{!r} groups with labels {}.".format( self.__class__.__name__, self._unique_coord.name, self._unique_coord.size, ", ".join(format_array_flat(self._unique_coord, 30).split()), ) def _get_index_and_items(self, index, grouper): from .resample_cftime import CFTimeGrouper s = pd.Series(np.arange(index.size), index) if isinstance(grouper, CFTimeGrouper): first_items = grouper.first_items(index) else: first_items = s.groupby(grouper).first() _apply_loffset(grouper, first_items) full_index = first_items.index if first_items.isnull().any(): first_items = first_items.dropna() return full_index, first_items def _iter_grouped(self): """Iterate over each element in this group""" for indices in self._group_indices: yield self._obj.isel(**{self._group_dim: indices}) def _infer_concat_args(self, applied_example): if self._group_dim in applied_example.dims: coord = self._group positions = self._group_indices else: coord = self._unique_coord positions = None (dim,) = coord.dims if isinstance(coord, _DummyGroup): coord = None return coord, dim, positions def _binary_op(self, other, f, reflexive=False): g = f if not reflexive else lambda x, y: f(y, x) applied = self._yield_binary_applied(g, other) return self._combine(applied) def _yield_binary_applied(self, func, other): dummy = None for group_value, obj in self: try: other_sel = other.sel(**{self._group.name: group_value}) except AttributeError: raise TypeError( "GroupBy objects only support binary ops " "when the other argument is a Dataset or " "DataArray" ) except (KeyError, ValueError): if self._group.name not in other.dims: raise ValueError( "incompatible dimensions for a grouped " f"binary operation: the group variable {self._group.name!r} " "is not a dimension on the other argument" ) if dummy is None: dummy = _dummy_copy(other) other_sel = dummy result = func(obj, other_sel) yield result def _maybe_restore_empty_groups(self, combined): """Our index contained empty groups (e.g., from a resampling). If we reduced on that dimension, we want to restore the full index. """ if self._full_index is not None and self._group.name in combined.dims: indexers = {self._group.name: self._full_index} combined = combined.reindex(**indexers) return combined def _maybe_unstack(self, obj): """This gets called if we are applying on an array with a multidimensional group.""" if self._stacked_dim is not None and self._stacked_dim in obj.dims: obj = obj.unstack(self._stacked_dim) for dim in self._inserted_dims: if dim in obj.coords: del obj.coords[dim] obj._indexes = propagate_indexes(obj._indexes, exclude=self._inserted_dims) return obj def fillna(self, value): """Fill missing values in this object by group. This operation follows the normal broadcasting and alignment rules that xarray uses for binary arithmetic, except the result is aligned to this object (``join='left'``) instead of aligned to the intersection of index coordinates (``join='inner'``). Parameters ---------- value Used to fill all matching missing values by group. Needs to be of a valid type for the wrapped object's fillna method. Returns ------- same type as the grouped object See Also -------- Dataset.fillna DataArray.fillna """ return ops.fillna(self, value) def quantile( self, q, dim=None, interpolation="linear", keep_attrs=None, skipna=True ): """Compute the qth quantile over each array in the groups and concatenate them together into a new array. Parameters ---------- q : float or sequence of float Quantile to compute, which must be between 0 and 1 inclusive. dim : ..., str or sequence of str, optional Dimension(s) over which to apply quantile. Defaults to the grouped dimension. interpolation : {"linear", "lower", "higher", "midpoint", "nearest"}, default: "linear" This optional parameter specifies the interpolation method to use when the desired quantile lies between two data points ``i < j``: * linear: ``i + (j - i) * fraction``, where ``fraction`` is the fractional part of the index surrounded by ``i`` and ``j``. * lower: ``i``. * higher: ``j``. * nearest: ``i`` or ``j``, whichever is nearest. * midpoint: ``(i + j) / 2``. skipna : bool, optional Whether to skip missing values when aggregating. Returns ------- quantiles : Variable If `q` is a single quantile, then the result is a scalar. If multiple percentiles are given, first axis of the result corresponds to the quantile. In either case a quantile dimension is added to the return array. The other dimensions are the dimensions that remain after the reduction of the array. See Also -------- numpy.nanquantile, numpy.quantile, pandas.Series.quantile, Dataset.quantile DataArray.quantile Examples -------- >>> da = xr.DataArray( ... [[1.3, 8.4, 0.7, 6.9], [0.7, 4.2, 9.4, 1.5], [6.5, 7.3, 2.6, 1.9]], ... coords={"x": [0, 0, 1], "y": [1, 1, 2, 2]}, ... dims=("x", "y"), ... ) >>> ds = xr.Dataset({"a": da}) >>> da.groupby("x").quantile(0) array([[0.7, 4.2, 0.7, 1.5], [6.5, 7.3, 2.6, 1.9]]) Coordinates: * y (y) int64 1 1 2 2 quantile float64 0.0 * x (x) int64 0 1 >>> ds.groupby("y").quantile(0, dim=...) Dimensions: (y: 2) Coordinates: quantile float64 0.0 * y (y) int64 1 2 Data variables: a (y) float64 0.7 0.7 >>> da.groupby("x").quantile([0, 0.5, 1]) array([[[0.7 , 1. , 1.3 ], [4.2 , 6.3 , 8.4 ], [0.7 , 5.05, 9.4 ], [1.5 , 4.2 , 6.9 ]], [[6.5 , 6.5 , 6.5 ], [7.3 , 7.3 , 7.3 ], [2.6 , 2.6 , 2.6 ], [1.9 , 1.9 , 1.9 ]]]) Coordinates: * y (y) int64 1 1 2 2 * quantile (quantile) float64 0.0 0.5 1.0 * x (x) int64 0 1 >>> ds.groupby("y").quantile([0, 0.5, 1], dim=...) Dimensions: (y: 2, quantile: 3) Coordinates: * quantile (quantile) float64 0.0 0.5 1.0 * y (y) int64 1 2 Data variables: a (y, quantile) float64 0.7 5.35 8.4 0.7 2.25 9.4 """ if dim is None: dim = self._group_dim out = self.map( self._obj.__class__.quantile, shortcut=False, q=q, dim=dim, interpolation=interpolation, keep_attrs=keep_attrs, skipna=skipna, ) return out def where(self, cond, other=dtypes.NA): """Return elements from `self` or `other` depending on `cond`. Parameters ---------- cond : DataArray or Dataset Locations at which to preserve this objects values. dtypes have to be `bool` other : scalar, DataArray or Dataset, optional Value to use for locations in this object where ``cond`` is False. By default, inserts missing values. Returns ------- same type as the grouped object See Also -------- Dataset.where """ return ops.where_method(self, cond, other) def _first_or_last(self, op, skipna, keep_attrs): if isinstance(self._group_indices[0], integer_types): # NB. this is currently only used for reductions along an existing # dimension return self._obj if keep_attrs is None: keep_attrs = _get_keep_attrs(default=True) return self.reduce(op, self._group_dim, skipna=skipna, keep_attrs=keep_attrs) def first(self, skipna=None, keep_attrs=None): """Return the first element of each group along the group dimension""" return self._first_or_last(duck_array_ops.first, skipna, keep_attrs) def last(self, skipna=None, keep_attrs=None): """Return the last element of each group along the group dimension""" return self._first_or_last(duck_array_ops.last, skipna, keep_attrs) def assign_coords(self, coords=None, **coords_kwargs): """Assign coordinates by group. See Also -------- Dataset.assign_coords Dataset.swap_dims """ coords_kwargs = either_dict_or_kwargs(coords, coords_kwargs, "assign_coords") return self.map(lambda ds: ds.assign_coords(**coords_kwargs)) def _maybe_reorder(xarray_obj, dim, positions): order = _inverse_permutation_indices(positions) if order is None or len(order) != xarray_obj.sizes[dim]: return xarray_obj else: return xarray_obj[{dim: order}] class DataArrayGroupBy(GroupBy, DataArrayGroupbyArithmetic): """GroupBy object specialized to grouping DataArray objects""" __slots__ = () def _iter_grouped_shortcut(self): """Fast version of `_iter_grouped` that yields Variables without metadata """ var = self._obj.variable for indices in self._group_indices: yield var[{self._group_dim: indices}] def _concat_shortcut(self, applied, dim, positions=None): # nb. don't worry too much about maintaining this method -- it does # speed things up, but it's not very interpretable and there are much # faster alternatives (e.g., doing the grouped aggregation in a # compiled language) stacked = Variable.concat(applied, dim, shortcut=True) reordered = _maybe_reorder(stacked, dim, positions) return self._obj._replace_maybe_drop_dims(reordered) def _restore_dim_order(self, stacked): def lookup_order(dimension): if dimension == self._group.name: (dimension,) = self._group.dims if dimension in self._obj.dims: axis = self._obj.get_axis_num(dimension) else: axis = 1e6 # some arbitrarily high value return axis new_order = sorted(stacked.dims, key=lookup_order) return stacked.transpose(*new_order, transpose_coords=self._restore_coord_dims) def map(self, func, shortcut=False, args=(), **kwargs): """Apply a function to each array in the group and concatenate them together into a new array. `func` is called like `func(ar, *args, **kwargs)` for each array `ar` in this group. Apply uses heuristics (like `pandas.GroupBy.apply`) to figure out how to stack together the array. The rule is: 1. If the dimension along which the group coordinate is defined is still in the first grouped array after applying `func`, then stack over this dimension. 2. Otherwise, stack over the new dimension given by name of this grouping (the argument to the `groupby` function). Parameters ---------- func : callable Callable to apply to each array. shortcut : bool, optional Whether or not to shortcut evaluation under the assumptions that: (1) The action of `func` does not depend on any of the array metadata (attributes or coordinates) but only on the data and dimensions. (2) The action of `func` creates arrays with homogeneous metadata, that is, with the same dimensions and attributes. If these conditions are satisfied `shortcut` provides significant speedup. This should be the case for many common groupby operations (e.g., applying numpy ufuncs). *args : tuple, optional Positional arguments passed to `func`. **kwargs Used to call `func(ar, **kwargs)` for each array `ar`. Returns ------- applied : DataArray or DataArray The result of splitting, applying and combining this array. """ grouped = self._iter_grouped_shortcut() if shortcut else self._iter_grouped() applied = (maybe_wrap_array(arr, func(arr, *args, **kwargs)) for arr in grouped) return self._combine(applied, shortcut=shortcut) def apply(self, func, shortcut=False, args=(), **kwargs): """ Backward compatible implementation of ``map`` See Also -------- DataArrayGroupBy.map """ warnings.warn( "GroupBy.apply may be deprecated in the future. Using GroupBy.map is encouraged", PendingDeprecationWarning, stacklevel=2, ) return self.map(func, shortcut=shortcut, args=args, **kwargs) def _combine(self, applied, shortcut=False): """Recombine the applied objects like the original.""" applied_example, applied = peek_at(applied) coord, dim, positions = self._infer_concat_args(applied_example) if shortcut: combined = self._concat_shortcut(applied, dim, positions) else: combined = concat(applied, dim) combined = _maybe_reorder(combined, dim, positions) if isinstance(combined, type(self._obj)): # only restore dimension order for arrays combined = self._restore_dim_order(combined) # assign coord when the applied function does not return that coord if coord is not None and dim not in applied_example.dims: if shortcut: coord_var = as_variable(coord) combined._coords[coord.name] = coord_var else: combined.coords[coord.name] = coord combined = self._maybe_restore_empty_groups(combined) combined = self._maybe_unstack(combined) return combined def reduce( self, func, dim=None, axis=None, keep_attrs=None, shortcut=True, **kwargs ): """Reduce the items in this group by applying `func` along some dimension(s). Parameters ---------- func : callable Function which can be called in the form `func(x, axis=axis, **kwargs)` to return the result of collapsing an np.ndarray over an integer valued axis. dim : ..., str or sequence of str, optional Dimension(s) over which to apply `func`. axis : int or sequence of int, optional Axis(es) over which to apply `func`. Only one of the 'dimension' and 'axis' arguments can be supplied. If neither are supplied, then `func` is calculated over all dimension for each group item. keep_attrs : bool, optional If True, the datasets's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. **kwargs : dict Additional keyword arguments passed on to `func`. Returns ------- reduced : Array Array with summarized data and the indicated dimension(s) removed. """ if dim is None: dim = self._group_dim if keep_attrs is None: keep_attrs = _get_keep_attrs(default=False) def reduce_array(ar): return ar.reduce(func, dim, axis, keep_attrs=keep_attrs, **kwargs) check_reduce_dims(dim, self.dims) return self.map(reduce_array, shortcut=shortcut) class DatasetGroupBy(GroupBy, DatasetGroupbyArithmetic): __slots__ = () def map(self, func, args=(), shortcut=None, **kwargs): """Apply a function to each Dataset in the group and concatenate them together into a new Dataset. `func` is called like `func(ds, *args, **kwargs)` for each dataset `ds` in this group. Apply uses heuristics (like `pandas.GroupBy.apply`) to figure out how to stack together the datasets. The rule is: 1. If the dimension along which the group coordinate is defined is still in the first grouped item after applying `func`, then stack over this dimension. 2. Otherwise, stack over the new dimension given by name of this grouping (the argument to the `groupby` function). Parameters ---------- func : callable Callable to apply to each sub-dataset. args : tuple, optional Positional arguments to pass to `func`. **kwargs Used to call `func(ds, **kwargs)` for each sub-dataset `ar`. Returns ------- applied : Dataset or DataArray The result of splitting, applying and combining this dataset. """ # ignore shortcut if set (for now) applied = (func(ds, *args, **kwargs) for ds in self._iter_grouped()) return self._combine(applied) def apply(self, func, args=(), shortcut=None, **kwargs): """ Backward compatible implementation of ``map`` See Also -------- DatasetGroupBy.map """ warnings.warn( "GroupBy.apply may be deprecated in the future. Using GroupBy.map is encouraged", PendingDeprecationWarning, stacklevel=2, ) return self.map(func, shortcut=shortcut, args=args, **kwargs) def _combine(self, applied): """Recombine the applied objects like the original.""" applied_example, applied = peek_at(applied) coord, dim, positions = self._infer_concat_args(applied_example) combined = concat(applied, dim) combined = _maybe_reorder(combined, dim, positions) # assign coord when the applied function does not return that coord if coord is not None and dim not in applied_example.dims: combined[coord.name] = coord combined = self._maybe_restore_empty_groups(combined) combined = self._maybe_unstack(combined) return combined def reduce(self, func, dim=None, keep_attrs=None, **kwargs): """Reduce the items in this group by applying `func` along some dimension(s). Parameters ---------- func : callable Function which can be called in the form `func(x, axis=axis, **kwargs)` to return the result of collapsing an np.ndarray over an integer valued axis. dim : ..., str or sequence of str, optional Dimension(s) over which to apply `func`. axis : int or sequence of int, optional Axis(es) over which to apply `func`. Only one of the 'dimension' and 'axis' arguments can be supplied. If neither are supplied, then `func` is calculated over all dimension for each group item. keep_attrs : bool, optional If True, the datasets's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. **kwargs : dict Additional keyword arguments passed on to `func`. Returns ------- reduced : Array Array with summarized data and the indicated dimension(s) removed. """ if dim is None: dim = self._group_dim if keep_attrs is None: keep_attrs = _get_keep_attrs(default=False) def reduce_dataset(ds): return ds.reduce(func, dim, keep_attrs, **kwargs) check_reduce_dims(dim, self.dims) return self.map(reduce_dataset) def assign(self, **kwargs): """Assign data variables by group. See Also -------- Dataset.assign """ return self.map(lambda ds: ds.assign(**kwargs))