from __future__ import annotations from typing import ( TYPE_CHECKING, AbstractSet, Any, Dict, Hashable, Iterable, List, Mapping, NamedTuple, Optional, Sequence, Set, Tuple, Union, ) import pandas as pd from . import dtypes, pdcompat from .alignment import deep_align from .duck_array_ops import lazy_array_equiv from .indexes import Index, PandasIndex from .utils import Frozen, compat_dict_union, dict_equiv, equivalent from .variable import Variable, as_variable, assert_unique_multiindex_level_names if TYPE_CHECKING: from .coordinates import Coordinates from .dataarray import DataArray from .dataset import Dataset DimsLike = Union[Hashable, Sequence[Hashable]] ArrayLike = Any VariableLike = Union[ ArrayLike, Tuple[DimsLike, ArrayLike], Tuple[DimsLike, ArrayLike, Mapping], Tuple[DimsLike, ArrayLike, Mapping, Mapping], ] XarrayValue = Union[DataArray, Variable, VariableLike] DatasetLike = Union[Dataset, Mapping[Any, XarrayValue]] CoercibleValue = Union[XarrayValue, pd.Series, pd.DataFrame] CoercibleMapping = Union[Dataset, Mapping[Any, CoercibleValue]] PANDAS_TYPES = (pd.Series, pd.DataFrame, pdcompat.Panel) _VALID_COMPAT = Frozen( { "identical": 0, "equals": 1, "broadcast_equals": 2, "minimal": 3, "no_conflicts": 4, "override": 5, } ) class Context: """object carrying the information of a call""" def __init__(self, func): self.func = func def broadcast_dimension_size(variables: List[Variable]) -> Dict[Hashable, int]: """Extract dimension sizes from a dictionary of variables. Raises ValueError if any dimensions have different sizes. """ dims: Dict[Hashable, int] = {} for var in variables: for dim, size in zip(var.dims, var.shape): if dim in dims and size != dims[dim]: raise ValueError(f"index {dim!r} not aligned") dims[dim] = size return dims class MergeError(ValueError): """Error class for merge failures due to incompatible arguments.""" # inherits from ValueError for backward compatibility # TODO: move this to an xarray.exceptions module? def unique_variable( name: Hashable, variables: List[Variable], compat: str = "broadcast_equals", equals: bool = None, ) -> Variable: """Return the unique variable from a list of variables or raise MergeError. Parameters ---------- name : hashable Name for this variable. variables : list of Variable List of Variable objects, all of which go by the same name in different inputs. compat : {"identical", "equals", "broadcast_equals", "no_conflicts", "override"}, optional Type of equality check to use. equals : None or bool, optional corresponding to result of compat test Returns ------- Variable to use in the result. Raises ------ MergeError: if any of the variables are not equal. """ out = variables[0] if len(variables) == 1 or compat == "override": return out combine_method = None if compat == "minimal": compat = "broadcast_equals" if compat == "broadcast_equals": dim_lengths = broadcast_dimension_size(variables) out = out.set_dims(dim_lengths) if compat == "no_conflicts": combine_method = "fillna" if equals is None: # first check without comparing values i.e. no computes for var in variables[1:]: equals = getattr(out, compat)(var, equiv=lazy_array_equiv) if equals is not True: break if equals is None: # now compare values with minimum number of computes out = out.compute() for var in variables[1:]: equals = getattr(out, compat)(var) if not equals: break if not equals: raise MergeError( f"conflicting values for variable {name!r} on objects to be combined. " "You can skip this check by specifying compat='override'." ) if combine_method: for var in variables[1:]: out = getattr(out, combine_method)(var) return out def _assert_compat_valid(compat): if compat not in _VALID_COMPAT: raise ValueError( "compat={!r} invalid: must be {}".format(compat, set(_VALID_COMPAT)) ) MergeElement = Tuple[Variable, Optional[Index]] def merge_collected( grouped: Dict[Hashable, List[MergeElement]], prioritized: Mapping[Any, MergeElement] = None, compat: str = "minimal", combine_attrs="override", ) -> Tuple[Dict[Hashable, Variable], Dict[Hashable, Index]]: """Merge dicts of variables, while resolving conflicts appropriately. Parameters ---------- grouped : mapping prioritized : mapping compat : str Type of equality check to use when checking for conflicts. Returns ------- Dict with keys taken by the union of keys on list_of_mappings, and Variable values corresponding to those that should be found on the merged result. """ if prioritized is None: prioritized = {} _assert_compat_valid(compat) merged_vars: Dict[Hashable, Variable] = {} merged_indexes: Dict[Hashable, Index] = {} for name, elements_list in grouped.items(): if name in prioritized: variable, index = prioritized[name] merged_vars[name] = variable if index is not None: merged_indexes[name] = index else: indexed_elements = [ (variable, index) for variable, index in elements_list if index is not None ] if indexed_elements: # TODO(shoyer): consider adjusting this logic. Are we really # OK throwing away variable without an index in favor of # indexed variables, without even checking if values match? variable, index = indexed_elements[0] for _, other_index in indexed_elements[1:]: if not index.equals(other_index): raise MergeError( f"conflicting values for index {name!r} on objects to be " f"combined:\nfirst value: {index!r}\nsecond value: {other_index!r}" ) if compat == "identical": for other_variable, _ in indexed_elements[1:]: if not dict_equiv(variable.attrs, other_variable.attrs): raise MergeError( "conflicting attribute values on combined " f"variable {name!r}:\nfirst value: {variable.attrs!r}\nsecond value: {other_variable.attrs!r}" ) merged_vars[name] = variable merged_vars[name].attrs = merge_attrs( [var.attrs for var, _ in indexed_elements], combine_attrs=combine_attrs, ) merged_indexes[name] = index else: variables = [variable for variable, _ in elements_list] try: merged_vars[name] = unique_variable(name, variables, compat) except MergeError: if compat != "minimal": # we need more than "minimal" compatibility (for which # we drop conflicting coordinates) raise if name in merged_vars: merged_vars[name].attrs = merge_attrs( [var.attrs for var in variables], combine_attrs=combine_attrs ) return merged_vars, merged_indexes def collect_variables_and_indexes( list_of_mappings: List[DatasetLike], ) -> Dict[Hashable, List[MergeElement]]: """Collect variables and indexes from list of mappings of xarray objects. Mappings must either be Dataset objects, or have values of one of the following types: - an xarray.Variable - a tuple `(dims, data[, attrs[, encoding]])` that can be converted in an xarray.Variable - or an xarray.DataArray """ from .dataarray import DataArray from .dataset import Dataset grouped: Dict[Hashable, List[Tuple[Variable, Optional[Index]]]] = {} def append(name, variable, index): values = grouped.setdefault(name, []) values.append((variable, index)) def append_all(variables, indexes): for name, variable in variables.items(): append(name, variable, indexes.get(name)) for mapping in list_of_mappings: if isinstance(mapping, Dataset): append_all(mapping.variables, mapping.xindexes) continue for name, variable in mapping.items(): if isinstance(variable, DataArray): coords = variable._coords.copy() # use private API for speed indexes = dict(variable.xindexes) # explicitly overwritten variables should take precedence coords.pop(name, None) indexes.pop(name, None) append_all(coords, indexes) variable = as_variable(variable, name=name) if variable.dims == (name,): idx_variable = variable.to_index_variable() index = variable._to_xindex() append(name, idx_variable, index) else: index = None append(name, variable, index) return grouped def collect_from_coordinates( list_of_coords: "List[Coordinates]", ) -> Dict[Hashable, List[MergeElement]]: """Collect variables and indexes to be merged from Coordinate objects.""" grouped: Dict[Hashable, List[Tuple[Variable, Optional[Index]]]] = {} for coords in list_of_coords: variables = coords.variables indexes = coords.xindexes for name, variable in variables.items(): value = grouped.setdefault(name, []) value.append((variable, indexes.get(name))) return grouped def merge_coordinates_without_align( objects: "List[Coordinates]", prioritized: Mapping[Any, MergeElement] = None, exclude_dims: AbstractSet = frozenset(), combine_attrs: str = "override", ) -> Tuple[Dict[Hashable, Variable], Dict[Hashable, Index]]: """Merge variables/indexes from coordinates without automatic alignments. This function is used for merging coordinate from pre-existing xarray objects. """ collected = collect_from_coordinates(objects) if exclude_dims: filtered: Dict[Hashable, List[MergeElement]] = {} for name, elements in collected.items(): new_elements = [ (variable, index) for variable, index in elements if exclude_dims.isdisjoint(variable.dims) ] if new_elements: filtered[name] = new_elements else: filtered = collected return merge_collected(filtered, prioritized, combine_attrs=combine_attrs) def determine_coords( list_of_mappings: Iterable["DatasetLike"], ) -> Tuple[Set[Hashable], Set[Hashable]]: """Given a list of dicts with xarray object values, identify coordinates. Parameters ---------- list_of_mappings : list of dict or list of Dataset Of the same form as the arguments to expand_variable_dicts. Returns ------- coord_names : set of variable names noncoord_names : set of variable names All variable found in the input should appear in either the set of coordinate or non-coordinate names. """ from .dataarray import DataArray from .dataset import Dataset coord_names: Set[Hashable] = set() noncoord_names: Set[Hashable] = set() for mapping in list_of_mappings: if isinstance(mapping, Dataset): coord_names.update(mapping.coords) noncoord_names.update(mapping.data_vars) else: for name, var in mapping.items(): if isinstance(var, DataArray): coords = set(var._coords) # use private API for speed # explicitly overwritten variables should take precedence coords.discard(name) coord_names.update(coords) return coord_names, noncoord_names def coerce_pandas_values(objects: Iterable["CoercibleMapping"]) -> List["DatasetLike"]: """Convert pandas values found in a list of labeled objects. Parameters ---------- objects : list of Dataset or mapping The mappings may contain any sort of objects coercible to xarray.Variables as keys, including pandas objects. Returns ------- List of Dataset or dictionary objects. Any inputs or values in the inputs that were pandas objects have been converted into native xarray objects. """ from .dataarray import DataArray from .dataset import Dataset out = [] for obj in objects: if isinstance(obj, Dataset): variables: "DatasetLike" = obj else: variables = {} if isinstance(obj, PANDAS_TYPES): obj = dict(obj.iteritems()) for k, v in obj.items(): if isinstance(v, PANDAS_TYPES): v = DataArray(v) variables[k] = v out.append(variables) return out def _get_priority_vars_and_indexes( objects: List["DatasetLike"], priority_arg: Optional[int], compat: str = "equals" ) -> Dict[Hashable, MergeElement]: """Extract the priority variable from a list of mappings. We need this method because in some cases the priority argument itself might have conflicting values (e.g., if it is a dict with two DataArray values with conflicting coordinate values). Parameters ---------- objects : list of dict-like of Variable Dictionaries in which to find the priority variables. priority_arg : int or None Integer object whose variable should take priority. compat : {"identical", "equals", "broadcast_equals", "no_conflicts"}, optional Compatibility checks to use when merging variables. Returns ------- A dictionary of variables and associated indexes (if any) to prioritize. """ if priority_arg is None: return {} collected = collect_variables_and_indexes([objects[priority_arg]]) variables, indexes = merge_collected(collected, compat=compat) grouped: Dict[Hashable, MergeElement] = {} for name, variable in variables.items(): grouped[name] = (variable, indexes.get(name)) return grouped def merge_coords( objects: Iterable["CoercibleMapping"], compat: str = "minimal", join: str = "outer", priority_arg: Optional[int] = None, indexes: Optional[Mapping[Any, Index]] = None, fill_value: object = dtypes.NA, ) -> Tuple[Dict[Hashable, Variable], Dict[Hashable, Index]]: """Merge coordinate variables. See merge_core below for argument descriptions. This works similarly to merge_core, except everything we don't worry about whether variables are coordinates or not. """ _assert_compat_valid(compat) coerced = coerce_pandas_values(objects) aligned = deep_align( coerced, join=join, copy=False, indexes=indexes, fill_value=fill_value ) collected = collect_variables_and_indexes(aligned) prioritized = _get_priority_vars_and_indexes(aligned, priority_arg, compat=compat) variables, out_indexes = merge_collected(collected, prioritized, compat=compat) assert_unique_multiindex_level_names(variables) return variables, out_indexes def merge_data_and_coords(data, coords, compat="broadcast_equals", join="outer"): """Used in Dataset.__init__.""" objects = [data, coords] explicit_coords = coords.keys() indexes = dict(_extract_indexes_from_coords(coords)) return merge_core( objects, compat, join, explicit_coords=explicit_coords, indexes=indexes ) def _extract_indexes_from_coords(coords): """Yields the name & index of valid indexes from a mapping of coords""" for name, variable in coords.items(): variable = as_variable(variable, name=name) if variable.dims == (name,): yield name, variable._to_xindex() def assert_valid_explicit_coords(variables, dims, explicit_coords): """Validate explicit coordinate names/dims. Raise a MergeError if an explicit coord shares a name with a dimension but is comprised of arbitrary dimensions. """ for coord_name in explicit_coords: if coord_name in dims and variables[coord_name].dims != (coord_name,): raise MergeError( f"coordinate {coord_name} shares a name with a dataset dimension, but is " "not a 1D variable along that dimension. This is disallowed " "by the xarray data model." ) def merge_attrs(variable_attrs, combine_attrs, context=None): """Combine attributes from different variables according to combine_attrs""" if not variable_attrs: # no attributes to merge return None if callable(combine_attrs): return combine_attrs(variable_attrs, context=context) elif combine_attrs == "drop": return {} elif combine_attrs == "override": return dict(variable_attrs[0]) elif combine_attrs == "no_conflicts": result = dict(variable_attrs[0]) for attrs in variable_attrs[1:]: try: result = compat_dict_union(result, attrs) except ValueError as e: raise MergeError( "combine_attrs='no_conflicts', but some values are not " f"the same. Merging {str(result)} with {str(attrs)}" ) from e return result elif combine_attrs == "drop_conflicts": result = {} dropped_keys = set() for attrs in variable_attrs: result.update( { key: value for key, value in attrs.items() if key not in result and key not in dropped_keys } ) result = { key: value for key, value in result.items() if key not in attrs or equivalent(attrs[key], value) } dropped_keys |= {key for key in attrs if key not in result} return result elif combine_attrs == "identical": result = dict(variable_attrs[0]) for attrs in variable_attrs[1:]: if not dict_equiv(result, attrs): raise MergeError( f"combine_attrs='identical', but attrs differ. First is {str(result)} " f", other is {str(attrs)}." ) return result else: raise ValueError(f"Unrecognised value for combine_attrs={combine_attrs}") class _MergeResult(NamedTuple): variables: Dict[Hashable, Variable] coord_names: Set[Hashable] dims: Dict[Hashable, int] indexes: Dict[Hashable, pd.Index] attrs: Dict[Hashable, Any] def merge_core( objects: Iterable["CoercibleMapping"], compat: str = "broadcast_equals", join: str = "outer", combine_attrs: Optional[str] = "override", priority_arg: Optional[int] = None, explicit_coords: Optional[Sequence] = None, indexes: Optional[Mapping[Any, Any]] = None, fill_value: object = dtypes.NA, ) -> _MergeResult: """Core logic for merging labeled objects. This is not public API. Parameters ---------- objects : list of mapping All values must be convertable to labeled arrays. compat : {"identical", "equals", "broadcast_equals", "no_conflicts", "override"}, optional Compatibility checks to use when merging variables. join : {"outer", "inner", "left", "right"}, optional How to combine objects with different indexes. combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \ "override"} or callable, default: "override" How to combine attributes of objects priority_arg : int, optional Optional argument in `objects` that takes precedence over the others. explicit_coords : set, optional An explicit list of variables from `objects` that are coordinates. indexes : dict, optional Dictionary with values given by xarray.Index objects or anything that may be cast to pandas.Index objects. fill_value : scalar, optional Value to use for newly missing values Returns ------- variables : dict Dictionary of Variable objects. coord_names : set Set of coordinate names. dims : dict Dictionary mapping from dimension names to sizes. attrs : dict Dictionary of attributes Raises ------ MergeError if the merge cannot be done successfully. """ from .dataarray import DataArray from .dataset import Dataset, calculate_dimensions _assert_compat_valid(compat) coerced = coerce_pandas_values(objects) aligned = deep_align( coerced, join=join, copy=False, indexes=indexes, fill_value=fill_value ) collected = collect_variables_and_indexes(aligned) prioritized = _get_priority_vars_and_indexes(aligned, priority_arg, compat=compat) variables, out_indexes = merge_collected( collected, prioritized, compat=compat, combine_attrs=combine_attrs ) assert_unique_multiindex_level_names(variables) dims = calculate_dimensions(variables) coord_names, noncoord_names = determine_coords(coerced) if explicit_coords is not None: assert_valid_explicit_coords(variables, dims, explicit_coords) coord_names.update(explicit_coords) for dim, size in dims.items(): if dim in variables: coord_names.add(dim) ambiguous_coords = coord_names.intersection(noncoord_names) if ambiguous_coords: raise MergeError( "unable to determine if these variables should be " f"coordinates or not in the merged result: {ambiguous_coords}" ) attrs = merge_attrs( [var.attrs for var in coerced if isinstance(var, (Dataset, DataArray))], combine_attrs, ) return _MergeResult(variables, coord_names, dims, out_indexes, attrs) def merge( objects: Iterable[Union["DataArray", "CoercibleMapping"]], compat: str = "no_conflicts", join: str = "outer", fill_value: object = dtypes.NA, combine_attrs: str = "override", ) -> "Dataset": """Merge any number of xarray objects into a single Dataset as variables. Parameters ---------- objects : iterable of Dataset or iterable of DataArray or iterable of dict-like Merge together all variables from these objects. If any of them are DataArray objects, they must have a name. compat : {"identical", "equals", "broadcast_equals", "no_conflicts", "override"}, optional String indicating how to compare variables of the same name for potential conflicts: - "broadcast_equals": all values must be equal when variables are broadcast against each other to ensure common dimensions. - "equals": all values and dimensions must be the same. - "identical": all values, dimensions and attributes must be the same. - "no_conflicts": only values which are not null in both datasets must be equal. The returned dataset then contains the combination of all non-null values. - "override": skip comparing and pick variable from first dataset join : {"outer", "inner", "left", "right", "exact"}, optional String indicating how to combine differing indexes in objects. - "outer": use the union of object indexes - "inner": use the intersection of object indexes - "left": use indexes from the first object with each dimension - "right": use indexes from the last object with each dimension - "exact": instead of aligning, raise `ValueError` when indexes to be aligned are not equal - "override": if indexes are of same size, rewrite indexes to be those of the first object with that dimension. Indexes for the same dimension must have the same size in all objects. fill_value : scalar or dict-like, optional Value to use for newly missing values. If a dict-like, maps variable names to fill values. Use a data array's name to refer to its values. combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \ "override"} or callable, default: "override" A callable or a string indicating how to combine attrs of the objects being merged: - "drop": empty attrs on returned Dataset. - "identical": all attrs must be the same on every object. - "no_conflicts": attrs from all objects are combined, any that have the same name must also have the same value. - "drop_conflicts": attrs from all objects are combined, any that have the same name but different values are dropped. - "override": skip comparing and copy attrs from the first dataset to the result. If a callable, it must expect a sequence of ``attrs`` dicts and a context object as its only parameters. Returns ------- Dataset Dataset with combined variables from each object. Examples -------- >>> x = xr.DataArray( ... [[1.0, 2.0], [3.0, 5.0]], ... dims=("lat", "lon"), ... coords={"lat": [35.0, 40.0], "lon": [100.0, 120.0]}, ... name="var1", ... ) >>> y = xr.DataArray( ... [[5.0, 6.0], [7.0, 8.0]], ... dims=("lat", "lon"), ... coords={"lat": [35.0, 42.0], "lon": [100.0, 150.0]}, ... name="var2", ... ) >>> z = xr.DataArray( ... [[0.0, 3.0], [4.0, 9.0]], ... dims=("time", "lon"), ... coords={"time": [30.0, 60.0], "lon": [100.0, 150.0]}, ... name="var3", ... ) >>> x array([[1., 2.], [3., 5.]]) Coordinates: * lat (lat) float64 35.0 40.0 * lon (lon) float64 100.0 120.0 >>> y array([[5., 6.], [7., 8.]]) Coordinates: * lat (lat) float64 35.0 42.0 * lon (lon) float64 100.0 150.0 >>> z array([[0., 3.], [4., 9.]]) Coordinates: * time (time) float64 30.0 60.0 * lon (lon) float64 100.0 150.0 >>> xr.merge([x, y, z]) Dimensions: (lat: 3, lon: 3, time: 2) Coordinates: * lat (lat) float64 35.0 40.0 42.0 * lon (lon) float64 100.0 120.0 150.0 * time (time) float64 30.0 60.0 Data variables: var1 (lat, lon) float64 1.0 2.0 nan 3.0 5.0 nan nan nan nan var2 (lat, lon) float64 5.0 nan 6.0 nan nan nan 7.0 nan 8.0 var3 (time, lon) float64 0.0 nan 3.0 4.0 nan 9.0 >>> xr.merge([x, y, z], compat="identical") Dimensions: (lat: 3, lon: 3, time: 2) Coordinates: * lat (lat) float64 35.0 40.0 42.0 * lon (lon) float64 100.0 120.0 150.0 * time (time) float64 30.0 60.0 Data variables: var1 (lat, lon) float64 1.0 2.0 nan 3.0 5.0 nan nan nan nan var2 (lat, lon) float64 5.0 nan 6.0 nan nan nan 7.0 nan 8.0 var3 (time, lon) float64 0.0 nan 3.0 4.0 nan 9.0 >>> xr.merge([x, y, z], compat="equals") Dimensions: (lat: 3, lon: 3, time: 2) Coordinates: * lat (lat) float64 35.0 40.0 42.0 * lon (lon) float64 100.0 120.0 150.0 * time (time) float64 30.0 60.0 Data variables: var1 (lat, lon) float64 1.0 2.0 nan 3.0 5.0 nan nan nan nan var2 (lat, lon) float64 5.0 nan 6.0 nan nan nan 7.0 nan 8.0 var3 (time, lon) float64 0.0 nan 3.0 4.0 nan 9.0 >>> xr.merge([x, y, z], compat="equals", fill_value=-999.0) Dimensions: (lat: 3, lon: 3, time: 2) Coordinates: * lat (lat) float64 35.0 40.0 42.0 * lon (lon) float64 100.0 120.0 150.0 * time (time) float64 30.0 60.0 Data variables: var1 (lat, lon) float64 1.0 2.0 -999.0 3.0 ... -999.0 -999.0 -999.0 var2 (lat, lon) float64 5.0 -999.0 6.0 -999.0 ... -999.0 7.0 -999.0 8.0 var3 (time, lon) float64 0.0 -999.0 3.0 4.0 -999.0 9.0 >>> xr.merge([x, y, z], join="override") Dimensions: (lat: 2, lon: 2, time: 2) Coordinates: * lat (lat) float64 35.0 40.0 * lon (lon) float64 100.0 120.0 * time (time) float64 30.0 60.0 Data variables: var1 (lat, lon) float64 1.0 2.0 3.0 5.0 var2 (lat, lon) float64 5.0 6.0 7.0 8.0 var3 (time, lon) float64 0.0 3.0 4.0 9.0 >>> xr.merge([x, y, z], join="inner") Dimensions: (lat: 1, lon: 1, time: 2) Coordinates: * lat (lat) float64 35.0 * lon (lon) float64 100.0 * time (time) float64 30.0 60.0 Data variables: var1 (lat, lon) float64 1.0 var2 (lat, lon) float64 5.0 var3 (time, lon) float64 0.0 4.0 >>> xr.merge([x, y, z], compat="identical", join="inner") Dimensions: (lat: 1, lon: 1, time: 2) Coordinates: * lat (lat) float64 35.0 * lon (lon) float64 100.0 * time (time) float64 30.0 60.0 Data variables: var1 (lat, lon) float64 1.0 var2 (lat, lon) float64 5.0 var3 (time, lon) float64 0.0 4.0 >>> xr.merge([x, y, z], compat="broadcast_equals", join="outer") Dimensions: (lat: 3, lon: 3, time: 2) Coordinates: * lat (lat) float64 35.0 40.0 42.0 * lon (lon) float64 100.0 120.0 150.0 * time (time) float64 30.0 60.0 Data variables: var1 (lat, lon) float64 1.0 2.0 nan 3.0 5.0 nan nan nan nan var2 (lat, lon) float64 5.0 nan 6.0 nan nan nan 7.0 nan 8.0 var3 (time, lon) float64 0.0 nan 3.0 4.0 nan 9.0 >>> xr.merge([x, y, z], join="exact") Traceback (most recent call last): ... ValueError: indexes along dimension 'lat' are not equal Raises ------ xarray.MergeError If any variables with the same name have conflicting values. See also -------- concat combine_nested combine_by_coords """ from .dataarray import DataArray from .dataset import Dataset dict_like_objects = [] for obj in objects: if not isinstance(obj, (DataArray, Dataset, dict)): raise TypeError( "objects must be an iterable containing only " "Dataset(s), DataArray(s), and dictionaries." ) obj = obj.to_dataset(promote_attrs=True) if isinstance(obj, DataArray) else obj dict_like_objects.append(obj) merge_result = merge_core( dict_like_objects, compat, join, combine_attrs=combine_attrs, fill_value=fill_value, ) return Dataset._construct_direct(**merge_result._asdict()) def dataset_merge_method( dataset: "Dataset", other: "CoercibleMapping", overwrite_vars: Union[Hashable, Iterable[Hashable]], compat: str, join: str, fill_value: Any, combine_attrs: str, ) -> _MergeResult: """Guts of the Dataset.merge method.""" # we are locked into supporting overwrite_vars for the Dataset.merge # method due for backwards compatibility # TODO: consider deprecating it? if isinstance(overwrite_vars, Iterable) and not isinstance(overwrite_vars, str): overwrite_vars = set(overwrite_vars) else: overwrite_vars = {overwrite_vars} if not overwrite_vars: objs = [dataset, other] priority_arg = None elif overwrite_vars == set(other): objs = [dataset, other] priority_arg = 1 else: other_overwrite: Dict[Hashable, CoercibleValue] = {} other_no_overwrite: Dict[Hashable, CoercibleValue] = {} for k, v in other.items(): if k in overwrite_vars: other_overwrite[k] = v else: other_no_overwrite[k] = v objs = [dataset, other_no_overwrite, other_overwrite] priority_arg = 2 return merge_core( objs, compat, join, priority_arg=priority_arg, fill_value=fill_value, combine_attrs=combine_attrs, ) def dataset_update_method( dataset: "Dataset", other: "CoercibleMapping" ) -> _MergeResult: """Guts of the Dataset.update method. This drops a duplicated coordinates from `other` if `other` is not an `xarray.Dataset`, e.g., if it's a dict with DataArray values (GH2068, GH2180). """ from .dataarray import DataArray from .dataset import Dataset if not isinstance(other, Dataset): other = dict(other) for key, value in other.items(): if isinstance(value, DataArray): # drop conflicting coordinates coord_names = [ c for c in value.coords if c not in value.dims and c in dataset.coords ] if coord_names: other[key] = value.drop_vars(coord_names) # use ds.coords and not ds.indexes, else str coords are cast to object # TODO: benbovy - flexible indexes: make it work with any xarray index indexes = {} for key, index in dataset.xindexes.items(): if isinstance(index, PandasIndex): indexes[key] = dataset.coords[key] else: indexes[key] = index return merge_core( [dataset, other], priority_arg=1, indexes=indexes, # type: ignore combine_attrs="override", )