import contextlib import warnings import numpy as np import pandas as pd import pytest from xarray import ( Dataset, SerializationWarning, Variable, coding, conventions, open_dataset, ) from xarray.backends.common import WritableCFDataStore from xarray.backends.memory import InMemoryDataStore from xarray.conventions import decode_cf from xarray.testing import assert_identical from . import assert_array_equal, requires_cftime, requires_dask, requires_netCDF4 from .test_backends import CFEncodedBase class TestBoolTypeArray: def test_booltype_array(self) -> None: x = np.array([1, 0, 1, 1, 0], dtype="i1") bx = conventions.BoolTypeArray(x) assert bx.dtype == bool assert_array_equal(bx, np.array([True, False, True, True, False], dtype=bool)) class TestNativeEndiannessArray: def test(self) -> None: x = np.arange(5, dtype=">i8") expected = np.arange(5, dtype="int64") a = conventions.NativeEndiannessArray(x) assert a.dtype == expected.dtype assert a.dtype == expected[:].dtype assert_array_equal(a, expected) def test_decode_cf_with_conflicting_fill_missing_value() -> None: expected = Variable(["t"], [np.nan, np.nan, 2], {"units": "foobar"}) var = Variable( ["t"], np.arange(3), {"units": "foobar", "missing_value": 0, "_FillValue": 1} ) with warnings.catch_warnings(record=True) as w: actual = conventions.decode_cf_variable("t", var) assert_identical(actual, expected) assert "has multiple fill" in str(w[0].message) expected = Variable(["t"], np.arange(10), {"units": "foobar"}) var = Variable( ["t"], np.arange(10), {"units": "foobar", "missing_value": np.nan, "_FillValue": np.nan}, ) actual = conventions.decode_cf_variable("t", var) assert_identical(actual, expected) var = Variable( ["t"], np.arange(10), { "units": "foobar", "missing_value": np.float32(np.nan), "_FillValue": np.float32(np.nan), }, ) actual = conventions.decode_cf_variable("t", var) assert_identical(actual, expected) @requires_cftime class TestEncodeCFVariable: def test_incompatible_attributes(self) -> None: invalid_vars = [ Variable( ["t"], pd.date_range("2000-01-01", periods=3), {"units": "foobar"} ), Variable(["t"], pd.to_timedelta(["1 day"]), {"units": "foobar"}), Variable(["t"], [0, 1, 2], {"add_offset": 0}, {"add_offset": 2}), Variable(["t"], [0, 1, 2], {"_FillValue": 0}, {"_FillValue": 2}), ] for var in invalid_vars: with pytest.raises(ValueError): conventions.encode_cf_variable(var) def test_missing_fillvalue(self) -> None: v = Variable(["x"], np.array([np.nan, 1, 2, 3])) v.encoding = {"dtype": "int16"} with pytest.warns(Warning, match="floating point data as an integer"): conventions.encode_cf_variable(v) def test_multidimensional_coordinates(self) -> None: # regression test for GH1763 # Set up test case with coordinates that have overlapping (but not # identical) dimensions. zeros1 = np.zeros((1, 5, 3)) zeros2 = np.zeros((1, 6, 3)) zeros3 = np.zeros((1, 5, 4)) orig = Dataset( { "lon1": (["x1", "y1"], zeros1.squeeze(0), {}), "lon2": (["x2", "y1"], zeros2.squeeze(0), {}), "lon3": (["x1", "y2"], zeros3.squeeze(0), {}), "lat1": (["x1", "y1"], zeros1.squeeze(0), {}), "lat2": (["x2", "y1"], zeros2.squeeze(0), {}), "lat3": (["x1", "y2"], zeros3.squeeze(0), {}), "foo1": (["time", "x1", "y1"], zeros1, {"coordinates": "lon1 lat1"}), "foo2": (["time", "x2", "y1"], zeros2, {"coordinates": "lon2 lat2"}), "foo3": (["time", "x1", "y2"], zeros3, {"coordinates": "lon3 lat3"}), "time": ("time", [0.0], {"units": "hours since 2017-01-01"}), } ) orig = conventions.decode_cf(orig) # Encode the coordinates, as they would be in a netCDF output file. enc, attrs = conventions.encode_dataset_coordinates(orig) # Make sure we have the right coordinates for each variable. foo1_coords = enc["foo1"].attrs.get("coordinates", "") foo2_coords = enc["foo2"].attrs.get("coordinates", "") foo3_coords = enc["foo3"].attrs.get("coordinates", "") assert set(foo1_coords.split()) == {"lat1", "lon1"} assert set(foo2_coords.split()) == {"lat2", "lon2"} assert set(foo3_coords.split()) == {"lat3", "lon3"} # Should not have any global coordinates. assert "coordinates" not in attrs def test_do_not_overwrite_user_coordinates(self) -> None: orig = Dataset( coords={"x": [0, 1, 2], "y": ("x", [5, 6, 7]), "z": ("x", [8, 9, 10])}, data_vars={"a": ("x", [1, 2, 3]), "b": ("x", [3, 5, 6])}, ) orig["a"].encoding["coordinates"] = "y" orig["b"].encoding["coordinates"] = "z" enc, _ = conventions.encode_dataset_coordinates(orig) assert enc["a"].attrs["coordinates"] == "y" assert enc["b"].attrs["coordinates"] == "z" orig["a"].attrs["coordinates"] = "foo" with pytest.raises(ValueError, match=r"'coordinates' found in both attrs"): conventions.encode_dataset_coordinates(orig) def test_emit_coordinates_attribute_in_attrs(self) -> None: orig = Dataset( {"a": 1, "b": 1}, coords={"t": np.array("2004-11-01T00:00:00", dtype=np.datetime64)}, ) orig["a"].attrs["coordinates"] = None enc, _ = conventions.encode_dataset_coordinates(orig) # check coordinate attribute emitted for 'a' assert "coordinates" not in enc["a"].attrs assert "coordinates" not in enc["a"].encoding # check coordinate attribute not emitted for 'b' assert enc["b"].attrs.get("coordinates") == "t" assert "coordinates" not in enc["b"].encoding def test_emit_coordinates_attribute_in_encoding(self) -> None: orig = Dataset( {"a": 1, "b": 1}, coords={"t": np.array("2004-11-01T00:00:00", dtype=np.datetime64)}, ) orig["a"].encoding["coordinates"] = None enc, _ = conventions.encode_dataset_coordinates(orig) # check coordinate attribute emitted for 'a' assert "coordinates" not in enc["a"].attrs assert "coordinates" not in enc["a"].encoding # check coordinate attribute not emitted for 'b' assert enc["b"].attrs.get("coordinates") == "t" assert "coordinates" not in enc["b"].encoding @requires_dask def test_string_object_warning(self) -> None: original = Variable(("x",), np.array(["foo", "bar"], dtype=object)).chunk() with pytest.warns(SerializationWarning, match="dask array with dtype=object"): encoded = conventions.encode_cf_variable(original) assert_identical(original, encoded) @requires_cftime class TestDecodeCF: def test_dataset(self) -> None: original = Dataset( { "t": ("t", [0, 1, 2], {"units": "days since 2000-01-01"}), "foo": ("t", [0, 0, 0], {"coordinates": "y", "units": "bar"}), "y": ("t", [5, 10, -999], {"_FillValue": -999}), } ) expected = Dataset( {"foo": ("t", [0, 0, 0], {"units": "bar"})}, { "t": pd.date_range("2000-01-01", periods=3), "y": ("t", [5.0, 10.0, np.nan]), }, ) actual = conventions.decode_cf(original) assert_identical(expected, actual) def test_invalid_coordinates(self) -> None: # regression test for GH308 original = Dataset({"foo": ("t", [1, 2], {"coordinates": "invalid"})}) actual = conventions.decode_cf(original) assert_identical(original, actual) def test_decode_coordinates(self) -> None: # regression test for GH610 original = Dataset( {"foo": ("t", [1, 2], {"coordinates": "x"}), "x": ("t", [4, 5])} ) actual = conventions.decode_cf(original) assert actual.foo.encoding["coordinates"] == "x" def test_0d_int32_encoding(self) -> None: original = Variable((), np.int32(0), encoding={"dtype": "int64"}) expected = Variable((), np.int64(0)) actual = conventions.maybe_encode_nonstring_dtype(original) assert_identical(expected, actual) def test_decode_cf_with_multiple_missing_values(self) -> None: original = Variable(["t"], [0, 1, 2], {"missing_value": np.array([0, 1])}) expected = Variable(["t"], [np.nan, np.nan, 2], {}) with warnings.catch_warnings(record=True) as w: actual = conventions.decode_cf_variable("t", original) assert_identical(expected, actual) assert "has multiple fill" in str(w[0].message) def test_decode_cf_with_drop_variables(self) -> None: original = Dataset( { "t": ("t", [0, 1, 2], {"units": "days since 2000-01-01"}), "x": ("x", [9, 8, 7], {"units": "km"}), "foo": ( ("t", "x"), [[0, 0, 0], [1, 1, 1], [2, 2, 2]], {"units": "bar"}, ), "y": ("t", [5, 10, -999], {"_FillValue": -999}), } ) expected = Dataset( { "t": pd.date_range("2000-01-01", periods=3), "foo": ( ("t", "x"), [[0, 0, 0], [1, 1, 1], [2, 2, 2]], {"units": "bar"}, ), "y": ("t", [5, 10, np.nan]), } ) actual = conventions.decode_cf(original, drop_variables=("x",)) actual2 = conventions.decode_cf(original, drop_variables="x") assert_identical(expected, actual) assert_identical(expected, actual2) @pytest.mark.filterwarnings("ignore:Ambiguous reference date string") def test_invalid_time_units_raises_eagerly(self) -> None: ds = Dataset({"time": ("time", [0, 1], {"units": "foobar since 123"})}) with pytest.raises(ValueError, match=r"unable to decode time"): decode_cf(ds) @requires_cftime def test_dataset_repr_with_netcdf4_datetimes(self) -> None: # regression test for #347 attrs = {"units": "days since 0001-01-01", "calendar": "noleap"} with warnings.catch_warnings(): warnings.filterwarnings("ignore", "unable to decode time") ds = decode_cf(Dataset({"time": ("time", [0, 1], attrs)})) assert "(time) object" in repr(ds) attrs = {"units": "days since 1900-01-01"} ds = decode_cf(Dataset({"time": ("time", [0, 1], attrs)})) assert "(time) datetime64[ns]" in repr(ds) @requires_cftime def test_decode_cf_datetime_transition_to_invalid(self) -> None: # manually create dataset with not-decoded date from datetime import datetime ds = Dataset(coords={"time": [0, 266 * 365]}) units = "days since 2000-01-01 00:00:00" ds.time.attrs = dict(units=units) with warnings.catch_warnings(): warnings.filterwarnings("ignore", "unable to decode time") ds_decoded = conventions.decode_cf(ds) expected = [datetime(2000, 1, 1, 0, 0), datetime(2265, 10, 28, 0, 0)] assert_array_equal(ds_decoded.time.values, expected) @requires_dask def test_decode_cf_with_dask(self) -> None: import dask.array as da original = Dataset( { "t": ("t", [0, 1, 2], {"units": "days since 2000-01-01"}), "foo": ("t", [0, 0, 0], {"coordinates": "y", "units": "bar"}), "bar": ("string2", [b"a", b"b"]), "baz": (("x"), [b"abc"], {"_Encoding": "utf-8"}), "y": ("t", [5, 10, -999], {"_FillValue": -999}), } ).chunk() decoded = conventions.decode_cf(original) print(decoded) assert all( isinstance(var.data, da.Array) for name, var in decoded.variables.items() if name not in decoded.xindexes ) assert_identical(decoded, conventions.decode_cf(original).compute()) @requires_dask def test_decode_dask_times(self) -> None: original = Dataset.from_dict( { "coords": {}, "dims": {"time": 5}, "data_vars": { "average_T1": { "dims": ("time",), "attrs": {"units": "days since 1958-01-01 00:00:00"}, "data": [87659.0, 88024.0, 88389.0, 88754.0, 89119.0], } }, } ) assert_identical( conventions.decode_cf(original.chunk()), conventions.decode_cf(original).chunk(), ) def test_decode_cf_time_kwargs(self) -> None: ds = Dataset.from_dict( { "coords": { "timedelta": { "data": np.array([1, 2, 3], dtype="int64"), "dims": "timedelta", "attrs": {"units": "days"}, }, "time": { "data": np.array([1, 2, 3], dtype="int64"), "dims": "time", "attrs": {"units": "days since 2000-01-01"}, }, }, "dims": {"time": 3, "timedelta": 3}, "data_vars": { "a": {"dims": ("time", "timedelta"), "data": np.ones((3, 3))}, }, } ) dsc = conventions.decode_cf(ds) assert dsc.timedelta.dtype == np.dtype("m8[ns]") assert dsc.time.dtype == np.dtype("M8[ns]") dsc = conventions.decode_cf(ds, decode_times=False) assert dsc.timedelta.dtype == np.dtype("int64") assert dsc.time.dtype == np.dtype("int64") dsc = conventions.decode_cf(ds, decode_times=True, decode_timedelta=False) assert dsc.timedelta.dtype == np.dtype("int64") assert dsc.time.dtype == np.dtype("M8[ns]") dsc = conventions.decode_cf(ds, decode_times=False, decode_timedelta=True) assert dsc.timedelta.dtype == np.dtype("m8[ns]") assert dsc.time.dtype == np.dtype("int64") class CFEncodedInMemoryStore(WritableCFDataStore, InMemoryDataStore): def encode_variable(self, var): """encode one variable""" coder = coding.strings.EncodedStringCoder(allows_unicode=True) var = coder.encode(var) return var @requires_netCDF4 class TestCFEncodedDataStore(CFEncodedBase): @contextlib.contextmanager def create_store(self): yield CFEncodedInMemoryStore() @contextlib.contextmanager def roundtrip( self, data, save_kwargs=None, open_kwargs=None, allow_cleanup_failure=False ): if save_kwargs is None: save_kwargs = {} if open_kwargs is None: open_kwargs = {} store = CFEncodedInMemoryStore() data.dump_to_store(store, **save_kwargs) yield open_dataset(store, **open_kwargs) @pytest.mark.skip("cannot roundtrip coordinates yet for CFEncodedInMemoryStore") def test_roundtrip_coordinates(self) -> None: pass def test_invalid_dataarray_names_raise(self) -> None: # only relevant for on-disk file formats pass def test_encoding_kwarg(self) -> None: # we haven't bothered to raise errors yet for unexpected encodings in # this test dummy pass def test_encoding_kwarg_fixed_width_string(self) -> None: # CFEncodedInMemoryStore doesn't support explicit string encodings. pass