import contextlib import inspect from copy import copy from datetime import datetime from typing import Any, Dict, Union import numpy as np import pandas as pd import pytest import xarray as xr import xarray.plot as xplt from xarray import DataArray, Dataset from xarray.plot.dataset_plot import _infer_meta_data from xarray.plot.plot import _infer_interval_breaks from xarray.plot.utils import ( _build_discrete_cmap, _color_palette, _determine_cmap_params, _maybe_gca, get_axis, label_from_attrs, ) from . import ( assert_array_equal, assert_equal, has_nc_time_axis, requires_cartopy, requires_cftime, requires_matplotlib, requires_nc_time_axis, requires_seaborn, ) # import mpl and change the backend before other mpl imports try: import matplotlib as mpl import matplotlib.pyplot as plt import mpl_toolkits # type: ignore except ImportError: pass try: import cartopy except ImportError: pass @contextlib.contextmanager def figure_context(*args, **kwargs): """context manager which autocloses a figure (even if the test failed)""" try: yield None finally: plt.close("all") @pytest.fixture(scope="function", autouse=True) def test_all_figures_closed(): """meta-test to ensure all figures are closed at the end of a test Notes: Scope is kept to module (only invoke this function once per test module) else tests cannot be run in parallel (locally). Disadvantage: only catches one open figure per run. May still give a false positive if tests are run in parallel. """ yield None open_figs = len(plt.get_fignums()) if open_figs: raise RuntimeError( f"tests did not close all figures ({open_figs} figures open)" ) @pytest.mark.flaky @pytest.mark.skip(reason="maybe flaky") def text_in_fig(): """ Return the set of all text in the figure """ return {t.get_text() for t in plt.gcf().findobj(mpl.text.Text)} def find_possible_colorbars(): # nb. this function also matches meshes from pcolormesh return plt.gcf().findobj(mpl.collections.QuadMesh) def substring_in_axes(substring, ax): """ Return True if a substring is found anywhere in an axes """ alltxt = {t.get_text() for t in ax.findobj(mpl.text.Text)} for txt in alltxt: if substring in txt: return True return False def substring_not_in_axes(substring, ax): """ Return True if a substring is not found anywhere in an axes """ alltxt = {t.get_text() for t in ax.findobj(mpl.text.Text)} check = [(substring not in txt) for txt in alltxt] return all(check) def easy_array(shape, start=0, stop=1): """ Make an array with desired shape using np.linspace shape is a tuple like (2, 3) """ a = np.linspace(start, stop, num=np.prod(shape)) return a.reshape(shape) def get_colorbar_label(colorbar): if colorbar.orientation == "vertical": return colorbar.ax.get_ylabel() else: return colorbar.ax.get_xlabel() @requires_matplotlib class PlotTestCase: @pytest.fixture(autouse=True) def setup(self): yield # Remove all matplotlib figures plt.close("all") def pass_in_axis(self, plotmethod, subplot_kw=None): fig, axes = plt.subplots(ncols=2, subplot_kw=subplot_kw) plotmethod(ax=axes[0]) assert axes[0].has_data() @pytest.mark.slow def imshow_called(self, plotmethod): plotmethod() images = plt.gca().findobj(mpl.image.AxesImage) return len(images) > 0 def contourf_called(self, plotmethod): plotmethod() paths = plt.gca().findobj(mpl.collections.PathCollection) return len(paths) > 0 class TestPlot(PlotTestCase): @pytest.fixture(autouse=True) def setup_array(self): self.darray = DataArray(easy_array((2, 3, 4))) def test_accessor(self): from ..plot.plot import _PlotMethods assert DataArray.plot is _PlotMethods assert isinstance(self.darray.plot, _PlotMethods) def test_label_from_attrs(self): da = self.darray.copy() assert "" == label_from_attrs(da) da.name = "a" da.attrs["units"] = "a_units" da.attrs["long_name"] = "a_long_name" da.attrs["standard_name"] = "a_standard_name" assert "a_long_name [a_units]" == label_from_attrs(da) da.attrs.pop("long_name") assert "a_standard_name [a_units]" == label_from_attrs(da) da.attrs.pop("units") assert "a_standard_name" == label_from_attrs(da) da.attrs["units"] = "a_units" da.attrs.pop("standard_name") assert "a [a_units]" == label_from_attrs(da) da.attrs.pop("units") assert "a" == label_from_attrs(da) # Latex strings can be longer without needing a new line: long_latex_name = r"$Ra_s = \mathrm{mean}(\epsilon_k) / \mu M^2_\infty$" da.attrs = dict(long_name=long_latex_name) assert label_from_attrs(da) == long_latex_name def test1d(self): self.darray[:, 0, 0].plot() with pytest.raises(ValueError, match=r"x must be one of None, 'dim_0'"): self.darray[:, 0, 0].plot(x="dim_1") with pytest.raises(TypeError, match=r"complex128"): (self.darray[:, 0, 0] + 1j).plot() def test_1d_bool(self): xr.ones_like(self.darray[:, 0, 0], dtype=bool).plot() def test_1d_x_y_kw(self): z = np.arange(10) da = DataArray(np.cos(z), dims=["z"], coords=[z], name="f") xy = [[None, None], [None, "z"], ["z", None]] f, ax = plt.subplots(3, 1) for aa, (x, y) in enumerate(xy): da.plot(x=x, y=y, ax=ax.flat[aa]) with pytest.raises(ValueError, match=r"Cannot specify both"): da.plot(x="z", y="z") error_msg = "must be one of None, 'z'" with pytest.raises(ValueError, match=rf"x {error_msg}"): da.plot(x="f") with pytest.raises(ValueError, match=rf"y {error_msg}"): da.plot(y="f") def test_multiindex_level_as_coord(self): da = xr.DataArray( np.arange(5), dims="x", coords=dict(a=("x", np.arange(5)), b=("x", np.arange(5, 10))), ) da = da.set_index(x=["a", "b"]) for x in ["a", "b"]: h = da.plot(x=x)[0] assert_array_equal(h.get_xdata(), da[x].values) for y in ["a", "b"]: h = da.plot(y=y)[0] assert_array_equal(h.get_ydata(), da[y].values) # Test for bug in GH issue #2725 def test_infer_line_data(self): current = DataArray( name="I", data=np.array([5, 8]), dims=["t"], coords={ "t": (["t"], np.array([0.1, 0.2])), "V": (["t"], np.array([100, 200])), }, ) # Plot current against voltage line = current.plot.line(x="V")[0] assert_array_equal(line.get_xdata(), current.coords["V"].values) # Plot current against time line = current.plot.line()[0] assert_array_equal(line.get_xdata(), current.coords["t"].values) def test_line_plot_along_1d_coord(self): # Test for bug in GH #3334 x_coord = xr.DataArray(data=[0.1, 0.2], dims=["x"]) t_coord = xr.DataArray(data=[10, 20], dims=["t"]) da = xr.DataArray( data=np.array([[0, 1], [5, 9]]), dims=["x", "t"], coords={"x": x_coord, "time": t_coord}, ) line = da.plot(x="time", hue="x")[0] assert_array_equal(line.get_xdata(), da.coords["time"].values) line = da.plot(y="time", hue="x")[0] assert_array_equal(line.get_ydata(), da.coords["time"].values) def test_line_plot_wrong_hue(self): da = xr.DataArray( data=np.array([[0, 1], [5, 9]]), dims=["x", "t"], ) with pytest.raises(ValueError, match="hue must be one of"): da.plot(x="t", hue="wrong_coord") def test_2d_line(self): with pytest.raises(ValueError, match=r"hue"): self.darray[:, :, 0].plot.line() self.darray[:, :, 0].plot.line(hue="dim_1") self.darray[:, :, 0].plot.line(x="dim_1") self.darray[:, :, 0].plot.line(y="dim_1") self.darray[:, :, 0].plot.line(x="dim_0", hue="dim_1") self.darray[:, :, 0].plot.line(y="dim_0", hue="dim_1") with pytest.raises(ValueError, match=r"Cannot"): self.darray[:, :, 0].plot.line(x="dim_1", y="dim_0", hue="dim_1") def test_2d_line_accepts_legend_kw(self): self.darray[:, :, 0].plot.line(x="dim_0", add_legend=False) assert not plt.gca().get_legend() plt.cla() self.darray[:, :, 0].plot.line(x="dim_0", add_legend=True) assert plt.gca().get_legend() # check whether legend title is set assert plt.gca().get_legend().get_title().get_text() == "dim_1" def test_2d_line_accepts_x_kw(self): self.darray[:, :, 0].plot.line(x="dim_0") assert plt.gca().get_xlabel() == "dim_0" plt.cla() self.darray[:, :, 0].plot.line(x="dim_1") assert plt.gca().get_xlabel() == "dim_1" def test_2d_line_accepts_hue_kw(self): self.darray[:, :, 0].plot.line(hue="dim_0") assert plt.gca().get_legend().get_title().get_text() == "dim_0" plt.cla() self.darray[:, :, 0].plot.line(hue="dim_1") assert plt.gca().get_legend().get_title().get_text() == "dim_1" def test_2d_coords_line_plot(self): lon, lat = np.meshgrid(np.linspace(-20, 20, 5), np.linspace(0, 30, 4)) lon += lat / 10 lat += lon / 10 da = xr.DataArray( np.arange(20).reshape(4, 5), dims=["y", "x"], coords={"lat": (("y", "x"), lat), "lon": (("y", "x"), lon)}, ) with figure_context(): hdl = da.plot.line(x="lon", hue="x") assert len(hdl) == 5 with figure_context(): hdl = da.plot.line(x="lon", hue="y") assert len(hdl) == 4 with pytest.raises(ValueError, match="For 2D inputs, hue must be a dimension"): da.plot.line(x="lon", hue="lat") def test_2d_coord_line_plot_coords_transpose_invariant(self): # checks for bug reported in GH #3933 x = np.arange(10) y = np.arange(20) ds = xr.Dataset(coords={"x": x, "y": y}) for z in [ds.y + ds.x, ds.x + ds.y]: ds = ds.assign_coords(z=z) ds["v"] = ds.x + ds.y ds["v"].plot.line(y="z", hue="x") def test_2d_before_squeeze(self): a = DataArray(easy_array((1, 5))) a.plot() def test2d_uniform_calls_imshow(self): assert self.imshow_called(self.darray[:, :, 0].plot.imshow) @pytest.mark.slow def test2d_nonuniform_calls_contourf(self): a = self.darray[:, :, 0] a.coords["dim_1"] = [2, 1, 89] assert self.contourf_called(a.plot.contourf) def test2d_1d_2d_coordinates_contourf(self): sz = (20, 10) depth = easy_array(sz) a = DataArray( easy_array(sz), dims=["z", "time"], coords={"depth": (["z", "time"], depth), "time": np.linspace(0, 1, sz[1])}, ) a.plot.contourf(x="time", y="depth") a.plot.contourf(x="depth", y="time") def test2d_1d_2d_coordinates_pcolormesh(self): # Test with equal coordinates to catch bug from #5097 sz = 10 y2d, x2d = np.meshgrid(np.arange(sz), np.arange(sz)) a = DataArray( easy_array((sz, sz)), dims=["x", "y"], coords={"x2d": (["x", "y"], x2d), "y2d": (["x", "y"], y2d)}, ) for x, y in [ ("x", "y"), ("y", "x"), ("x2d", "y"), ("y", "x2d"), ("x", "y2d"), ("y2d", "x"), ("x2d", "y2d"), ("y2d", "x2d"), ]: p = a.plot.pcolormesh(x=x, y=y) v = p.get_paths()[0].vertices # Check all vertices are different, except last vertex which should be the # same as the first _, unique_counts = np.unique(v[:-1], axis=0, return_counts=True) assert np.all(unique_counts == 1) def test_contourf_cmap_set(self): a = DataArray(easy_array((4, 4)), dims=["z", "time"]) cmap = mpl.cm.viridis # use copy to ensure cmap is not changed by contourf() # Set vmin and vmax so that _build_discrete_colormap is called with # extend='both'. extend is passed to # mpl.colors.from_levels_and_colors(), which returns a result with # sensible under and over values if extend='both', but not if # extend='neither' (but if extend='neither' the under and over values # would not be used because the data would all be within the plotted # range) pl = a.plot.contourf(cmap=copy(cmap), vmin=0.1, vmax=0.9) # check the set_bad color assert_array_equal( pl.cmap(np.ma.masked_invalid([np.nan]))[0], cmap(np.ma.masked_invalid([np.nan]))[0], ) # check the set_under color assert pl.cmap(-np.inf) == cmap(-np.inf) # check the set_over color assert pl.cmap(np.inf) == cmap(np.inf) def test_contourf_cmap_set_with_bad_under_over(self): a = DataArray(easy_array((4, 4)), dims=["z", "time"]) # make a copy here because we want a local cmap that we will modify. cmap = copy(mpl.cm.viridis) cmap.set_bad("w") # check we actually changed the set_bad color assert np.all( cmap(np.ma.masked_invalid([np.nan]))[0] != mpl.cm.viridis(np.ma.masked_invalid([np.nan]))[0] ) cmap.set_under("r") # check we actually changed the set_under color assert cmap(-np.inf) != mpl.cm.viridis(-np.inf) cmap.set_over("g") # check we actually changed the set_over color assert cmap(np.inf) != mpl.cm.viridis(-np.inf) # copy to ensure cmap is not changed by contourf() pl = a.plot.contourf(cmap=copy(cmap)) # check the set_bad color has been kept assert_array_equal( pl.cmap(np.ma.masked_invalid([np.nan]))[0], cmap(np.ma.masked_invalid([np.nan]))[0], ) # check the set_under color has been kept assert pl.cmap(-np.inf) == cmap(-np.inf) # check the set_over color has been kept assert pl.cmap(np.inf) == cmap(np.inf) def test3d(self): self.darray.plot() def test_can_pass_in_axis(self): self.pass_in_axis(self.darray.plot) def test__infer_interval_breaks(self): assert_array_equal([-0.5, 0.5, 1.5], _infer_interval_breaks([0, 1])) assert_array_equal( [-0.5, 0.5, 5.0, 9.5, 10.5], _infer_interval_breaks([0, 1, 9, 10]) ) assert_array_equal( pd.date_range("20000101", periods=4) - np.timedelta64(12, "h"), _infer_interval_breaks(pd.date_range("20000101", periods=3)), ) # make a bounded 2D array that we will center and re-infer xref, yref = np.meshgrid(np.arange(6), np.arange(5)) cx = (xref[1:, 1:] + xref[:-1, :-1]) / 2 cy = (yref[1:, 1:] + yref[:-1, :-1]) / 2 x = _infer_interval_breaks(cx, axis=1) x = _infer_interval_breaks(x, axis=0) y = _infer_interval_breaks(cy, axis=1) y = _infer_interval_breaks(y, axis=0) np.testing.assert_allclose(xref, x) np.testing.assert_allclose(yref, y) # test that ValueError is raised for non-monotonic 1D inputs with pytest.raises(ValueError): _infer_interval_breaks(np.array([0, 2, 1]), check_monotonic=True) def test__infer_interval_breaks_logscale(self): """ Check if interval breaks are defined in the logspace if scale="log" """ # Check for 1d arrays x = np.logspace(-4, 3, 8) expected_interval_breaks = 10 ** np.linspace(-4.5, 3.5, 9) np.testing.assert_allclose( _infer_interval_breaks(x, scale="log"), expected_interval_breaks ) # Check for 2d arrays x = np.logspace(-4, 3, 8) y = np.linspace(-5, 5, 11) x, y = np.meshgrid(x, y) expected_interval_breaks = np.vstack([10 ** np.linspace(-4.5, 3.5, 9)] * 12) x = _infer_interval_breaks(x, axis=1, scale="log") x = _infer_interval_breaks(x, axis=0, scale="log") np.testing.assert_allclose(x, expected_interval_breaks) def test__infer_interval_breaks_logscale_invalid_coords(self): """ Check error is raised when passing non-positive coordinates with logscale """ # Check if error is raised after a zero value in the array x = np.linspace(0, 5, 6) with pytest.raises(ValueError): _infer_interval_breaks(x, scale="log") # Check if error is raised after nagative values in the array x = np.linspace(-5, 5, 11) with pytest.raises(ValueError): _infer_interval_breaks(x, scale="log") def test_geo_data(self): # Regression test for gh2250 # Realistic coordinates taken from the example dataset lat = np.array( [ [16.28, 18.48, 19.58, 19.54, 18.35], [28.07, 30.52, 31.73, 31.68, 30.37], [39.65, 42.27, 43.56, 43.51, 42.11], [50.52, 53.22, 54.55, 54.50, 53.06], ] ) lon = np.array( [ [-126.13, -113.69, -100.92, -88.04, -75.29], [-129.27, -115.62, -101.54, -87.32, -73.26], [-133.10, -118.00, -102.31, -86.42, -70.76], [-137.85, -120.99, -103.28, -85.28, -67.62], ] ) data = np.sqrt(lon ** 2 + lat ** 2) da = DataArray( data, dims=("y", "x"), coords={"lon": (("y", "x"), lon), "lat": (("y", "x"), lat)}, ) da.plot(x="lon", y="lat") ax = plt.gca() assert ax.has_data() da.plot(x="lat", y="lon") ax = plt.gca() assert ax.has_data() def test_datetime_dimension(self): nrow = 3 ncol = 4 time = pd.date_range("2000-01-01", periods=nrow) a = DataArray( easy_array((nrow, ncol)), coords=[("time", time), ("y", range(ncol))] ) a.plot() ax = plt.gca() assert ax.has_data() @pytest.mark.slow @pytest.mark.filterwarnings("ignore:tight_layout cannot") def test_convenient_facetgrid(self): a = easy_array((10, 15, 4)) d = DataArray(a, dims=["y", "x", "z"]) d.coords["z"] = list("abcd") g = d.plot(x="x", y="y", col="z", col_wrap=2, cmap="cool") assert_array_equal(g.axes.shape, [2, 2]) for ax in g.axes.flat: assert ax.has_data() with pytest.raises(ValueError, match=r"[Ff]acet"): d.plot(x="x", y="y", col="z", ax=plt.gca()) with pytest.raises(ValueError, match=r"[Ff]acet"): d[0].plot(x="x", y="y", col="z", ax=plt.gca()) @pytest.mark.slow def test_subplot_kws(self): a = easy_array((10, 15, 4)) d = DataArray(a, dims=["y", "x", "z"]) d.coords["z"] = list("abcd") g = d.plot( x="x", y="y", col="z", col_wrap=2, cmap="cool", subplot_kws=dict(facecolor="r"), ) for ax in g.axes.flat: # mpl V2 assert ax.get_facecolor()[0:3] == mpl.colors.to_rgb("r") @pytest.mark.slow def test_plot_size(self): self.darray[:, 0, 0].plot(figsize=(13, 5)) assert tuple(plt.gcf().get_size_inches()) == (13, 5) self.darray.plot(figsize=(13, 5)) assert tuple(plt.gcf().get_size_inches()) == (13, 5) self.darray.plot(size=5) assert plt.gcf().get_size_inches()[1] == 5 self.darray.plot(size=5, aspect=2) assert tuple(plt.gcf().get_size_inches()) == (10, 5) with pytest.raises(ValueError, match=r"cannot provide both"): self.darray.plot(ax=plt.gca(), figsize=(3, 4)) with pytest.raises(ValueError, match=r"cannot provide both"): self.darray.plot(size=5, figsize=(3, 4)) with pytest.raises(ValueError, match=r"cannot provide both"): self.darray.plot(size=5, ax=plt.gca()) with pytest.raises(ValueError, match=r"cannot provide `aspect`"): self.darray.plot(aspect=1) @pytest.mark.slow @pytest.mark.filterwarnings("ignore:tight_layout cannot") def test_convenient_facetgrid_4d(self): a = easy_array((10, 15, 2, 3)) d = DataArray(a, dims=["y", "x", "columns", "rows"]) g = d.plot(x="x", y="y", col="columns", row="rows") assert_array_equal(g.axes.shape, [3, 2]) for ax in g.axes.flat: assert ax.has_data() with pytest.raises(ValueError, match=r"[Ff]acet"): d.plot(x="x", y="y", col="columns", ax=plt.gca()) def test_coord_with_interval(self): """Test line plot with intervals.""" bins = [-1, 0, 1, 2] self.darray.groupby_bins("dim_0", bins).mean(...).plot() def test_coord_with_interval_x(self): """Test line plot with intervals explicitly on x axis.""" bins = [-1, 0, 1, 2] self.darray.groupby_bins("dim_0", bins).mean(...).plot(x="dim_0_bins") def test_coord_with_interval_y(self): """Test line plot with intervals explicitly on y axis.""" bins = [-1, 0, 1, 2] self.darray.groupby_bins("dim_0", bins).mean(...).plot(y="dim_0_bins") def test_coord_with_interval_xy(self): """Test line plot with intervals on both x and y axes.""" bins = [-1, 0, 1, 2] self.darray.groupby_bins("dim_0", bins).mean(...).dim_0_bins.plot() @pytest.mark.parametrize("dim", ("x", "y")) def test_labels_with_units_with_interval(self, dim): """Test line plot with intervals and a units attribute.""" bins = [-1, 0, 1, 2] arr = self.darray.groupby_bins("dim_0", bins).mean(...) arr.dim_0_bins.attrs["units"] = "m" (mappable,) = arr.plot(**{dim: "dim_0_bins"}) ax = mappable.figure.gca() actual = getattr(ax, f"get_{dim}label")() expected = "dim_0_bins_center [m]" assert actual == expected class TestPlot1D(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): d = [0, 1.1, 0, 2] self.darray = DataArray(d, coords={"period": range(len(d))}, dims="period") self.darray.period.attrs["units"] = "s" def test_xlabel_is_index_name(self): self.darray.plot() assert "period [s]" == plt.gca().get_xlabel() def test_no_label_name_on_x_axis(self): self.darray.plot(y="period") assert "" == plt.gca().get_xlabel() def test_no_label_name_on_y_axis(self): self.darray.plot() assert "" == plt.gca().get_ylabel() def test_ylabel_is_data_name(self): self.darray.name = "temperature" self.darray.attrs["units"] = "degrees_Celsius" self.darray.plot() assert "temperature [degrees_Celsius]" == plt.gca().get_ylabel() def test_xlabel_is_data_name(self): self.darray.name = "temperature" self.darray.attrs["units"] = "degrees_Celsius" self.darray.plot(y="period") assert "temperature [degrees_Celsius]" == plt.gca().get_xlabel() def test_format_string(self): self.darray.plot.line("ro") def test_can_pass_in_axis(self): self.pass_in_axis(self.darray.plot.line) def test_nonnumeric_index(self): a = DataArray([1, 2, 3], {"letter": ["a", "b", "c"]}, dims="letter") a.plot.line() def test_primitive_returned(self): p = self.darray.plot.line() assert isinstance(p[0], mpl.lines.Line2D) @pytest.mark.slow def test_plot_nans(self): self.darray[1] = np.nan self.darray.plot.line() def test_x_ticks_are_rotated_for_time(self): time = pd.date_range("2000-01-01", "2000-01-10") a = DataArray(np.arange(len(time)), [("t", time)]) a.plot.line() rotation = plt.gca().get_xticklabels()[0].get_rotation() assert rotation != 0 def test_xyincrease_false_changes_axes(self): self.darray.plot.line(xincrease=False, yincrease=False) xlim = plt.gca().get_xlim() ylim = plt.gca().get_ylim() diffs = xlim[1] - xlim[0], ylim[1] - ylim[0] assert all(x < 0 for x in diffs) def test_slice_in_title(self): self.darray.coords["d"] = 10.009 self.darray.plot.line() title = plt.gca().get_title() assert "d = 10.01" == title class TestPlotStep(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): self.darray = DataArray(easy_array((2, 3, 4))) def test_step(self): hdl = self.darray[0, 0].plot.step() assert "steps" in hdl[0].get_drawstyle() @pytest.mark.parametrize("where", ["pre", "post", "mid"]) def test_step_with_where(self, where): hdl = self.darray[0, 0].plot.step(where=where) assert hdl[0].get_drawstyle() == f"steps-{where}" def test_coord_with_interval_step(self): """Test step plot with intervals.""" bins = [-1, 0, 1, 2] self.darray.groupby_bins("dim_0", bins).mean(...).plot.step() assert len(plt.gca().lines[0].get_xdata()) == ((len(bins) - 1) * 2) def test_coord_with_interval_step_x(self): """Test step plot with intervals explicitly on x axis.""" bins = [-1, 0, 1, 2] self.darray.groupby_bins("dim_0", bins).mean(...).plot.step(x="dim_0_bins") assert len(plt.gca().lines[0].get_xdata()) == ((len(bins) - 1) * 2) def test_coord_with_interval_step_y(self): """Test step plot with intervals explicitly on y axis.""" bins = [-1, 0, 1, 2] self.darray.groupby_bins("dim_0", bins).mean(...).plot.step(y="dim_0_bins") assert len(plt.gca().lines[0].get_xdata()) == ((len(bins) - 1) * 2) class TestPlotHistogram(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): self.darray = DataArray(easy_array((2, 3, 4))) def test_3d_array(self): self.darray.plot.hist() def test_xlabel_uses_name(self): self.darray.name = "testpoints" self.darray.attrs["units"] = "testunits" self.darray.plot.hist() assert "testpoints [testunits]" == plt.gca().get_xlabel() def test_title_is_histogram(self): self.darray.coords["d"] = 10 self.darray.plot.hist() assert "d = 10" == plt.gca().get_title() def test_can_pass_in_kwargs(self): nbins = 5 self.darray.plot.hist(bins=nbins) assert nbins == len(plt.gca().patches) def test_can_pass_in_axis(self): self.pass_in_axis(self.darray.plot.hist) def test_primitive_returned(self): h = self.darray.plot.hist() assert isinstance(h[-1][0], mpl.patches.Rectangle) @pytest.mark.slow def test_plot_nans(self): self.darray[0, 0, 0] = np.nan self.darray.plot.hist() def test_hist_coord_with_interval(self): ( self.darray.groupby_bins("dim_0", [-1, 0, 1, 2]) .mean(...) .plot.hist(range=(-1, 2)) ) @requires_matplotlib class TestDetermineCmapParams: @pytest.fixture(autouse=True) def setUp(self): self.data = np.linspace(0, 1, num=100) def test_robust(self): cmap_params = _determine_cmap_params(self.data, robust=True) assert cmap_params["vmin"] == np.percentile(self.data, 2) assert cmap_params["vmax"] == np.percentile(self.data, 98) assert cmap_params["cmap"] == "viridis" assert cmap_params["extend"] == "both" assert cmap_params["levels"] is None assert cmap_params["norm"] is None def test_center(self): cmap_params = _determine_cmap_params(self.data, center=0.5) assert cmap_params["vmax"] - 0.5 == 0.5 - cmap_params["vmin"] assert cmap_params["cmap"] == "RdBu_r" assert cmap_params["extend"] == "neither" assert cmap_params["levels"] is None assert cmap_params["norm"] is None def test_cmap_sequential_option(self): with xr.set_options(cmap_sequential="magma"): cmap_params = _determine_cmap_params(self.data) assert cmap_params["cmap"] == "magma" def test_cmap_sequential_explicit_option(self): with xr.set_options(cmap_sequential=mpl.cm.magma): cmap_params = _determine_cmap_params(self.data) assert cmap_params["cmap"] == mpl.cm.magma def test_cmap_divergent_option(self): with xr.set_options(cmap_divergent="magma"): cmap_params = _determine_cmap_params(self.data, center=0.5) assert cmap_params["cmap"] == "magma" def test_nan_inf_are_ignored(self): cmap_params1 = _determine_cmap_params(self.data) data = self.data data[50:55] = np.nan data[56:60] = np.inf cmap_params2 = _determine_cmap_params(data) assert cmap_params1["vmin"] == cmap_params2["vmin"] assert cmap_params1["vmax"] == cmap_params2["vmax"] @pytest.mark.slow def test_integer_levels(self): data = self.data + 1 # default is to cover full data range but with no guarantee on Nlevels for level in np.arange(2, 10, dtype=int): cmap_params = _determine_cmap_params(data, levels=level) assert cmap_params["vmin"] is None assert cmap_params["vmax"] is None assert cmap_params["norm"].vmin == cmap_params["levels"][0] assert cmap_params["norm"].vmax == cmap_params["levels"][-1] assert cmap_params["extend"] == "neither" # with min max we are more strict cmap_params = _determine_cmap_params( data, levels=5, vmin=0, vmax=5, cmap="Blues" ) assert cmap_params["vmin"] is None assert cmap_params["vmax"] is None assert cmap_params["norm"].vmin == 0 assert cmap_params["norm"].vmax == 5 assert cmap_params["norm"].vmin == cmap_params["levels"][0] assert cmap_params["norm"].vmax == cmap_params["levels"][-1] assert cmap_params["cmap"].name == "Blues" assert cmap_params["extend"] == "neither" assert cmap_params["cmap"].N == 4 assert cmap_params["norm"].N == 5 cmap_params = _determine_cmap_params(data, levels=5, vmin=0.5, vmax=1.5) assert cmap_params["cmap"].name == "viridis" assert cmap_params["extend"] == "max" cmap_params = _determine_cmap_params(data, levels=5, vmin=1.5) assert cmap_params["cmap"].name == "viridis" assert cmap_params["extend"] == "min" cmap_params = _determine_cmap_params(data, levels=5, vmin=1.3, vmax=1.5) assert cmap_params["cmap"].name == "viridis" assert cmap_params["extend"] == "both" def test_list_levels(self): data = self.data + 1 orig_levels = [0, 1, 2, 3, 4, 5] # vmin and vmax should be ignored if levels are explicitly provided cmap_params = _determine_cmap_params(data, levels=orig_levels, vmin=0, vmax=3) assert cmap_params["vmin"] is None assert cmap_params["vmax"] is None assert cmap_params["norm"].vmin == 0 assert cmap_params["norm"].vmax == 5 assert cmap_params["cmap"].N == 5 assert cmap_params["norm"].N == 6 for wrap_levels in [list, np.array, pd.Index, DataArray]: cmap_params = _determine_cmap_params(data, levels=wrap_levels(orig_levels)) assert_array_equal(cmap_params["levels"], orig_levels) def test_divergentcontrol(self): neg = self.data - 0.1 pos = self.data # Default with positive data will be a normal cmap cmap_params = _determine_cmap_params(pos) assert cmap_params["vmin"] == 0 assert cmap_params["vmax"] == 1 assert cmap_params["cmap"] == "viridis" # Default with negative data will be a divergent cmap cmap_params = _determine_cmap_params(neg) assert cmap_params["vmin"] == -0.9 assert cmap_params["vmax"] == 0.9 assert cmap_params["cmap"] == "RdBu_r" # Setting vmin or vmax should prevent this only if center is false cmap_params = _determine_cmap_params(neg, vmin=-0.1, center=False) assert cmap_params["vmin"] == -0.1 assert cmap_params["vmax"] == 0.9 assert cmap_params["cmap"] == "viridis" cmap_params = _determine_cmap_params(neg, vmax=0.5, center=False) assert cmap_params["vmin"] == -0.1 assert cmap_params["vmax"] == 0.5 assert cmap_params["cmap"] == "viridis" # Setting center=False too cmap_params = _determine_cmap_params(neg, center=False) assert cmap_params["vmin"] == -0.1 assert cmap_params["vmax"] == 0.9 assert cmap_params["cmap"] == "viridis" # However, I should still be able to set center and have a div cmap cmap_params = _determine_cmap_params(neg, center=0) assert cmap_params["vmin"] == -0.9 assert cmap_params["vmax"] == 0.9 assert cmap_params["cmap"] == "RdBu_r" # Setting vmin or vmax alone will force symmetric bounds around center cmap_params = _determine_cmap_params(neg, vmin=-0.1) assert cmap_params["vmin"] == -0.1 assert cmap_params["vmax"] == 0.1 assert cmap_params["cmap"] == "RdBu_r" cmap_params = _determine_cmap_params(neg, vmax=0.5) assert cmap_params["vmin"] == -0.5 assert cmap_params["vmax"] == 0.5 assert cmap_params["cmap"] == "RdBu_r" cmap_params = _determine_cmap_params(neg, vmax=0.6, center=0.1) assert cmap_params["vmin"] == -0.4 assert cmap_params["vmax"] == 0.6 assert cmap_params["cmap"] == "RdBu_r" # But this is only true if vmin or vmax are negative cmap_params = _determine_cmap_params(pos, vmin=-0.1) assert cmap_params["vmin"] == -0.1 assert cmap_params["vmax"] == 0.1 assert cmap_params["cmap"] == "RdBu_r" cmap_params = _determine_cmap_params(pos, vmin=0.1) assert cmap_params["vmin"] == 0.1 assert cmap_params["vmax"] == 1 assert cmap_params["cmap"] == "viridis" cmap_params = _determine_cmap_params(pos, vmax=0.5) assert cmap_params["vmin"] == 0 assert cmap_params["vmax"] == 0.5 assert cmap_params["cmap"] == "viridis" # If both vmin and vmax are provided, output is non-divergent cmap_params = _determine_cmap_params(neg, vmin=-0.2, vmax=0.6) assert cmap_params["vmin"] == -0.2 assert cmap_params["vmax"] == 0.6 assert cmap_params["cmap"] == "viridis" # regression test for GH3524 # infer diverging colormap from divergent levels cmap_params = _determine_cmap_params(pos, levels=[-0.1, 0, 1]) # specifying levels makes cmap a Colormap object assert cmap_params["cmap"].name == "RdBu_r" def test_norm_sets_vmin_vmax(self): vmin = self.data.min() vmax = self.data.max() for norm, extend, levels in zip( [ mpl.colors.Normalize(), mpl.colors.Normalize(), mpl.colors.Normalize(vmin + 0.1, vmax - 0.1), mpl.colors.Normalize(None, vmax - 0.1), mpl.colors.Normalize(vmin + 0.1, None), ], ["neither", "neither", "both", "max", "min"], [7, None, None, None, None], ): test_min = vmin if norm.vmin is None else norm.vmin test_max = vmax if norm.vmax is None else norm.vmax cmap_params = _determine_cmap_params(self.data, norm=norm, levels=levels) assert cmap_params["vmin"] is None assert cmap_params["vmax"] is None assert cmap_params["norm"].vmin == test_min assert cmap_params["norm"].vmax == test_max assert cmap_params["extend"] == extend assert cmap_params["norm"] == norm @requires_matplotlib class TestDiscreteColorMap: @pytest.fixture(autouse=True) def setUp(self): x = np.arange(start=0, stop=10, step=2) y = np.arange(start=9, stop=-7, step=-3) xy = np.dstack(np.meshgrid(x, y)) distance = np.linalg.norm(xy, axis=2) self.darray = DataArray(distance, list(zip(("y", "x"), (y, x)))) self.data_min = distance.min() self.data_max = distance.max() yield # Remove all matplotlib figures plt.close("all") @pytest.mark.slow def test_recover_from_seaborn_jet_exception(self): pal = _color_palette("jet", 4) assert type(pal) == np.ndarray assert len(pal) == 4 @pytest.mark.slow def test_build_discrete_cmap(self): for (cmap, levels, extend, filled) in [ ("jet", [0, 1], "both", False), ("hot", [-4, 4], "max", True), ]: ncmap, cnorm = _build_discrete_cmap(cmap, levels, extend, filled) assert ncmap.N == len(levels) - 1 assert len(ncmap.colors) == len(levels) - 1 assert cnorm.N == len(levels) assert_array_equal(cnorm.boundaries, levels) assert max(levels) == cnorm.vmax assert min(levels) == cnorm.vmin if filled: assert ncmap.colorbar_extend == extend else: assert ncmap.colorbar_extend == "max" @pytest.mark.slow def test_discrete_colormap_list_of_levels(self): for extend, levels in [ ("max", [-1, 2, 4, 8, 10]), ("both", [2, 5, 10, 11]), ("neither", [0, 5, 10, 15]), ("min", [2, 5, 10, 15]), ]: for kind in ["imshow", "pcolormesh", "contourf", "contour"]: primitive = getattr(self.darray.plot, kind)(levels=levels) assert_array_equal(levels, primitive.norm.boundaries) assert max(levels) == primitive.norm.vmax assert min(levels) == primitive.norm.vmin if kind != "contour": assert extend == primitive.cmap.colorbar_extend else: assert "max" == primitive.cmap.colorbar_extend assert len(levels) - 1 == len(primitive.cmap.colors) @pytest.mark.slow def test_discrete_colormap_int_levels(self): for extend, levels, vmin, vmax, cmap in [ ("neither", 7, None, None, None), ("neither", 7, None, 20, mpl.cm.RdBu), ("both", 7, 4, 8, None), ("min", 10, 4, 15, None), ]: for kind in ["imshow", "pcolormesh", "contourf", "contour"]: primitive = getattr(self.darray.plot, kind)( levels=levels, vmin=vmin, vmax=vmax, cmap=cmap ) assert levels >= len(primitive.norm.boundaries) - 1 if vmax is None: assert primitive.norm.vmax >= self.data_max else: assert primitive.norm.vmax >= vmax if vmin is None: assert primitive.norm.vmin <= self.data_min else: assert primitive.norm.vmin <= vmin if kind != "contour": assert extend == primitive.cmap.colorbar_extend else: assert "max" == primitive.cmap.colorbar_extend assert levels >= len(primitive.cmap.colors) def test_discrete_colormap_list_levels_and_vmin_or_vmax(self): levels = [0, 5, 10, 15] primitive = self.darray.plot(levels=levels, vmin=-3, vmax=20) assert primitive.norm.vmax == max(levels) assert primitive.norm.vmin == min(levels) def test_discrete_colormap_provided_boundary_norm(self): norm = mpl.colors.BoundaryNorm([0, 5, 10, 15], 4) primitive = self.darray.plot.contourf(norm=norm) np.testing.assert_allclose(primitive.levels, norm.boundaries) class Common2dMixin: """ Common tests for 2d plotting go here. These tests assume that a staticmethod for `self.plotfunc` exists. Should have the same name as the method. """ # Needs to be overridden in TestSurface for facet grid plots subplot_kws: Union[Dict[Any, Any], None] = None @pytest.fixture(autouse=True) def setUp(self): da = DataArray( easy_array((10, 15), start=-1), dims=["y", "x"], coords={"y": np.arange(10), "x": np.arange(15)}, ) # add 2d coords ds = da.to_dataset(name="testvar") x, y = np.meshgrid(da.x.values, da.y.values) ds["x2d"] = DataArray(x, dims=["y", "x"]) ds["y2d"] = DataArray(y, dims=["y", "x"]) ds = ds.set_coords(["x2d", "y2d"]) # set darray and plot method self.darray = ds.testvar # Add CF-compliant metadata self.darray.attrs["long_name"] = "a_long_name" self.darray.attrs["units"] = "a_units" self.darray.x.attrs["long_name"] = "x_long_name" self.darray.x.attrs["units"] = "x_units" self.darray.y.attrs["long_name"] = "y_long_name" self.darray.y.attrs["units"] = "y_units" self.plotmethod = getattr(self.darray.plot, self.plotfunc.__name__) def test_label_names(self): self.plotmethod() assert "x_long_name [x_units]" == plt.gca().get_xlabel() assert "y_long_name [y_units]" == plt.gca().get_ylabel() def test_1d_raises_valueerror(self): with pytest.raises(ValueError, match=r"DataArray must be 2d"): self.plotfunc(self.darray[0, :]) def test_bool(self): xr.ones_like(self.darray, dtype=bool).plot() def test_complex_raises_typeerror(self): with pytest.raises(TypeError, match=r"complex128"): (self.darray + 1j).plot() def test_3d_raises_valueerror(self): a = DataArray(easy_array((2, 3, 4))) if self.plotfunc.__name__ == "imshow": pytest.skip() with pytest.raises(ValueError, match=r"DataArray must be 2d"): self.plotfunc(a) def test_nonnumeric_index(self): a = DataArray(easy_array((3, 2)), coords=[["a", "b", "c"], ["d", "e"]]) if self.plotfunc.__name__ == "surface": # ax.plot_surface errors with nonnumerics: with pytest.raises(Exception): self.plotfunc(a) else: self.plotfunc(a) def test_multiindex_raises_typeerror(self): a = DataArray( easy_array((3, 2)), dims=("x", "y"), coords=dict(x=("x", [0, 1, 2]), a=("y", [0, 1]), b=("y", [2, 3])), ) a = a.set_index(y=("a", "b")) with pytest.raises(TypeError, match=r"[Pp]lot"): self.plotfunc(a) def test_can_pass_in_axis(self): self.pass_in_axis(self.plotmethod) def test_xyincrease_defaults(self): # With default settings the axis must be ordered regardless # of the coords order. self.plotfunc(DataArray(easy_array((3, 2)), coords=[[1, 2, 3], [1, 2]])) bounds = plt.gca().get_ylim() assert bounds[0] < bounds[1] bounds = plt.gca().get_xlim() assert bounds[0] < bounds[1] # Inverted coords self.plotfunc(DataArray(easy_array((3, 2)), coords=[[3, 2, 1], [2, 1]])) bounds = plt.gca().get_ylim() assert bounds[0] < bounds[1] bounds = plt.gca().get_xlim() assert bounds[0] < bounds[1] def test_xyincrease_false_changes_axes(self): self.plotmethod(xincrease=False, yincrease=False) xlim = plt.gca().get_xlim() ylim = plt.gca().get_ylim() diffs = xlim[0] - 14, xlim[1] - 0, ylim[0] - 9, ylim[1] - 0 assert all(abs(x) < 1 for x in diffs) def test_xyincrease_true_changes_axes(self): self.plotmethod(xincrease=True, yincrease=True) xlim = plt.gca().get_xlim() ylim = plt.gca().get_ylim() diffs = xlim[0] - 0, xlim[1] - 14, ylim[0] - 0, ylim[1] - 9 assert all(abs(x) < 1 for x in diffs) def test_x_ticks_are_rotated_for_time(self): time = pd.date_range("2000-01-01", "2000-01-10") a = DataArray(np.random.randn(2, len(time)), [("xx", [1, 2]), ("t", time)]) a.plot(x="t") rotation = plt.gca().get_xticklabels()[0].get_rotation() assert rotation != 0 def test_plot_nans(self): x1 = self.darray[:5] x2 = self.darray.copy() x2[5:] = np.nan clim1 = self.plotfunc(x1).get_clim() clim2 = self.plotfunc(x2).get_clim() assert clim1 == clim2 @pytest.mark.filterwarnings("ignore::UserWarning") @pytest.mark.filterwarnings("ignore:invalid value encountered") def test_can_plot_all_nans(self): # regression test for issue #1780 self.plotfunc(DataArray(np.full((2, 2), np.nan))) @pytest.mark.filterwarnings("ignore: Attempting to set") def test_can_plot_axis_size_one(self): if self.plotfunc.__name__ not in ("contour", "contourf"): self.plotfunc(DataArray(np.ones((1, 1)))) def test_disallows_rgb_arg(self): with pytest.raises(ValueError): # Always invalid for most plots. Invalid for imshow with 2D data. self.plotfunc(DataArray(np.ones((2, 2))), rgb="not None") def test_viridis_cmap(self): cmap_name = self.plotmethod(cmap="viridis").get_cmap().name assert "viridis" == cmap_name def test_default_cmap(self): cmap_name = self.plotmethod().get_cmap().name assert "RdBu_r" == cmap_name cmap_name = self.plotfunc(abs(self.darray)).get_cmap().name assert "viridis" == cmap_name @requires_seaborn def test_seaborn_palette_as_cmap(self): cmap_name = self.plotmethod(levels=2, cmap="husl").get_cmap().name assert "husl" == cmap_name def test_can_change_default_cmap(self): cmap_name = self.plotmethod(cmap="Blues").get_cmap().name assert "Blues" == cmap_name def test_diverging_color_limits(self): artist = self.plotmethod() vmin, vmax = artist.get_clim() assert round(abs(-vmin - vmax), 7) == 0 def test_xy_strings(self): self.plotmethod("y", "x") ax = plt.gca() assert "y_long_name [y_units]" == ax.get_xlabel() assert "x_long_name [x_units]" == ax.get_ylabel() def test_positional_coord_string(self): self.plotmethod(y="x") ax = plt.gca() assert "x_long_name [x_units]" == ax.get_ylabel() assert "y_long_name [y_units]" == ax.get_xlabel() self.plotmethod(x="x") ax = plt.gca() assert "x_long_name [x_units]" == ax.get_xlabel() assert "y_long_name [y_units]" == ax.get_ylabel() def test_bad_x_string_exception(self): with pytest.raises(ValueError, match=r"x and y cannot be equal."): self.plotmethod(x="y", y="y") error_msg = "must be one of None, 'x', 'x2d', 'y', 'y2d'" with pytest.raises(ValueError, match=rf"x {error_msg}"): self.plotmethod("not_a_real_dim", "y") with pytest.raises(ValueError, match=rf"x {error_msg}"): self.plotmethod(x="not_a_real_dim") with pytest.raises(ValueError, match=rf"y {error_msg}"): self.plotmethod(y="not_a_real_dim") self.darray.coords["z"] = 100 def test_coord_strings(self): # 1d coords (same as dims) assert {"x", "y"} == set(self.darray.dims) self.plotmethod(y="y", x="x") def test_non_linked_coords(self): # plot with coordinate names that are not dimensions self.darray.coords["newy"] = self.darray.y + 150 # Normal case, without transpose self.plotfunc(self.darray, x="x", y="newy") ax = plt.gca() assert "x_long_name [x_units]" == ax.get_xlabel() assert "newy" == ax.get_ylabel() # ax limits might change between plotfuncs # simply ensure that these high coords were passed over assert np.min(ax.get_ylim()) > 100.0 def test_non_linked_coords_transpose(self): # plot with coordinate names that are not dimensions, # and with transposed y and x axes # This used to raise an error with pcolormesh and contour # https://github.com/pydata/xarray/issues/788 self.darray.coords["newy"] = self.darray.y + 150 self.plotfunc(self.darray, x="newy", y="x") ax = plt.gca() assert "newy" == ax.get_xlabel() assert "x_long_name [x_units]" == ax.get_ylabel() # ax limits might change between plotfuncs # simply ensure that these high coords were passed over assert np.min(ax.get_xlim()) > 100.0 def test_multiindex_level_as_coord(self): da = DataArray( easy_array((3, 2)), dims=("x", "y"), coords=dict(x=("x", [0, 1, 2]), a=("y", [0, 1]), b=("y", [2, 3])), ) da = da.set_index(y=["a", "b"]) for x, y in (("a", "x"), ("b", "x"), ("x", "a"), ("x", "b")): self.plotfunc(da, x=x, y=y) ax = plt.gca() assert x == ax.get_xlabel() assert y == ax.get_ylabel() with pytest.raises(ValueError, match=r"levels of the same MultiIndex"): self.plotfunc(da, x="a", y="b") with pytest.raises(ValueError, match=r"y must be one of None, 'a', 'b', 'x'"): self.plotfunc(da, x="a", y="y") def test_default_title(self): a = DataArray(easy_array((4, 3, 2)), dims=["a", "b", "c"]) a.coords["c"] = [0, 1] a.coords["d"] = "foo" self.plotfunc(a.isel(c=1)) title = plt.gca().get_title() assert "c = 1, d = foo" == title or "d = foo, c = 1" == title def test_colorbar_default_label(self): self.plotmethod(add_colorbar=True) assert "a_long_name [a_units]" in text_in_fig() def test_no_labels(self): self.darray.name = "testvar" self.darray.attrs["units"] = "test_units" self.plotmethod(add_labels=False) alltxt = text_in_fig() for string in [ "x_long_name [x_units]", "y_long_name [y_units]", "testvar [test_units]", ]: assert string not in alltxt def test_colorbar_kwargs(self): # replace label self.darray.attrs.pop("long_name") self.darray.attrs["units"] = "test_units" # check default colorbar label self.plotmethod(add_colorbar=True) alltxt = text_in_fig() assert "testvar [test_units]" in alltxt self.darray.attrs.pop("units") self.darray.name = "testvar" self.plotmethod(add_colorbar=True, cbar_kwargs={"label": "MyLabel"}) alltxt = text_in_fig() assert "MyLabel" in alltxt assert "testvar" not in alltxt # you can use anything accepted by the dict constructor as well self.plotmethod(add_colorbar=True, cbar_kwargs=(("label", "MyLabel"),)) alltxt = text_in_fig() assert "MyLabel" in alltxt assert "testvar" not in alltxt # change cbar ax fig, (ax, cax) = plt.subplots(1, 2) self.plotmethod( ax=ax, cbar_ax=cax, add_colorbar=True, cbar_kwargs={"label": "MyBar"} ) assert ax.has_data() assert cax.has_data() alltxt = text_in_fig() assert "MyBar" in alltxt assert "testvar" not in alltxt # note that there are two ways to achieve this fig, (ax, cax) = plt.subplots(1, 2) self.plotmethod( ax=ax, add_colorbar=True, cbar_kwargs={"label": "MyBar", "cax": cax} ) assert ax.has_data() assert cax.has_data() alltxt = text_in_fig() assert "MyBar" in alltxt assert "testvar" not in alltxt # see that no colorbar is respected self.plotmethod(add_colorbar=False) assert "testvar" not in text_in_fig() # check that error is raised pytest.raises( ValueError, self.plotmethod, add_colorbar=False, cbar_kwargs={"label": "label"}, ) def test_verbose_facetgrid(self): a = easy_array((10, 15, 3)) d = DataArray(a, dims=["y", "x", "z"]) g = xplt.FacetGrid(d, col="z", subplot_kws=self.subplot_kws) g.map_dataarray(self.plotfunc, "x", "y") for ax in g.axes.flat: assert ax.has_data() def test_2d_function_and_method_signature_same(self): func_sig = inspect.getcallargs(self.plotfunc, self.darray) method_sig = inspect.getcallargs(self.plotmethod) del method_sig["_PlotMethods_obj"] del func_sig["darray"] assert func_sig == method_sig @pytest.mark.filterwarnings("ignore:tight_layout cannot") def test_convenient_facetgrid(self): a = easy_array((10, 15, 4)) d = DataArray(a, dims=["y", "x", "z"]) g = self.plotfunc(d, x="x", y="y", col="z", col_wrap=2) assert_array_equal(g.axes.shape, [2, 2]) for (y, x), ax in np.ndenumerate(g.axes): assert ax.has_data() if x == 0: assert "y" == ax.get_ylabel() else: assert "" == ax.get_ylabel() if y == 1: assert "x" == ax.get_xlabel() else: assert "" == ax.get_xlabel() # Infering labels g = self.plotfunc(d, col="z", col_wrap=2) assert_array_equal(g.axes.shape, [2, 2]) for (y, x), ax in np.ndenumerate(g.axes): assert ax.has_data() if x == 0: assert "y" == ax.get_ylabel() else: assert "" == ax.get_ylabel() if y == 1: assert "x" == ax.get_xlabel() else: assert "" == ax.get_xlabel() @pytest.mark.filterwarnings("ignore:tight_layout cannot") def test_convenient_facetgrid_4d(self): a = easy_array((10, 15, 2, 3)) d = DataArray(a, dims=["y", "x", "columns", "rows"]) g = self.plotfunc(d, x="x", y="y", col="columns", row="rows") assert_array_equal(g.axes.shape, [3, 2]) for ax in g.axes.flat: assert ax.has_data() @pytest.mark.filterwarnings("ignore:This figure includes") def test_facetgrid_map_only_appends_mappables(self): a = easy_array((10, 15, 2, 3)) d = DataArray(a, dims=["y", "x", "columns", "rows"]) g = self.plotfunc(d, x="x", y="y", col="columns", row="rows") expected = g._mappables g.map(lambda: plt.plot(1, 1)) actual = g._mappables assert expected == actual def test_facetgrid_cmap(self): # Regression test for GH592 data = np.random.random(size=(20, 25, 12)) + np.linspace(-3, 3, 12) d = DataArray(data, dims=["x", "y", "time"]) fg = d.plot.pcolormesh(col="time") # check that all color limits are the same assert len({m.get_clim() for m in fg._mappables}) == 1 # check that all colormaps are the same assert len({m.get_cmap().name for m in fg._mappables}) == 1 def test_facetgrid_cbar_kwargs(self): a = easy_array((10, 15, 2, 3)) d = DataArray(a, dims=["y", "x", "columns", "rows"]) g = self.plotfunc( d, x="x", y="y", col="columns", row="rows", cbar_kwargs={"label": "test_label"}, ) # catch contour case if g.cbar is not None: assert get_colorbar_label(g.cbar) == "test_label" def test_facetgrid_no_cbar_ax(self): a = easy_array((10, 15, 2, 3)) d = DataArray(a, dims=["y", "x", "columns", "rows"]) with pytest.raises(ValueError): self.plotfunc(d, x="x", y="y", col="columns", row="rows", cbar_ax=1) def test_cmap_and_color_both(self): with pytest.raises(ValueError): self.plotmethod(colors="k", cmap="RdBu") def test_2d_coord_with_interval(self): for dim in self.darray.dims: gp = self.darray.groupby_bins(dim, range(15), restore_coord_dims=True).mean( dim ) for kind in ["imshow", "pcolormesh", "contourf", "contour"]: getattr(gp.plot, kind)() def test_colormap_error_norm_and_vmin_vmax(self): norm = mpl.colors.LogNorm(0.1, 1e1) with pytest.raises(ValueError): self.darray.plot(norm=norm, vmin=2) with pytest.raises(ValueError): self.darray.plot(norm=norm, vmax=2) @pytest.mark.slow class TestContourf(Common2dMixin, PlotTestCase): plotfunc = staticmethod(xplt.contourf) @pytest.mark.slow def test_contourf_called(self): # Having both statements ensures the test works properly assert not self.contourf_called(self.darray.plot.imshow) assert self.contourf_called(self.darray.plot.contourf) def test_primitive_artist_returned(self): artist = self.plotmethod() assert isinstance(artist, mpl.contour.QuadContourSet) @pytest.mark.slow def test_extend(self): artist = self.plotmethod() assert artist.extend == "neither" self.darray[0, 0] = -100 self.darray[-1, -1] = 100 artist = self.plotmethod(robust=True) assert artist.extend == "both" self.darray[0, 0] = 0 self.darray[-1, -1] = 0 artist = self.plotmethod(vmin=-0, vmax=10) assert artist.extend == "min" artist = self.plotmethod(vmin=-10, vmax=0) assert artist.extend == "max" @pytest.mark.slow def test_2d_coord_names(self): self.plotmethod(x="x2d", y="y2d") # make sure labels came out ok ax = plt.gca() assert "x2d" == ax.get_xlabel() assert "y2d" == ax.get_ylabel() @pytest.mark.slow def test_levels(self): artist = self.plotmethod(levels=[-0.5, -0.4, 0.1]) assert artist.extend == "both" artist = self.plotmethod(levels=3) assert artist.extend == "neither" @pytest.mark.slow class TestContour(Common2dMixin, PlotTestCase): plotfunc = staticmethod(xplt.contour) # matplotlib cmap.colors gives an rgbA ndarray # when seaborn is used, instead we get an rgb tuple @staticmethod def _color_as_tuple(c): return tuple(c[:3]) def test_colors(self): # with single color, we don't want rgb array artist = self.plotmethod(colors="k") assert artist.cmap.colors[0] == "k" artist = self.plotmethod(colors=["k", "b"]) assert self._color_as_tuple(artist.cmap.colors[1]) == (0.0, 0.0, 1.0) artist = self.darray.plot.contour( levels=[-0.5, 0.0, 0.5, 1.0], colors=["k", "r", "w", "b"] ) assert self._color_as_tuple(artist.cmap.colors[1]) == (1.0, 0.0, 0.0) assert self._color_as_tuple(artist.cmap.colors[2]) == (1.0, 1.0, 1.0) # the last color is now under "over" assert self._color_as_tuple(artist.cmap._rgba_over) == (0.0, 0.0, 1.0) def test_colors_np_levels(self): # https://github.com/pydata/xarray/issues/3284 levels = np.array([-0.5, 0.0, 0.5, 1.0]) artist = self.darray.plot.contour(levels=levels, colors=["k", "r", "w", "b"]) assert self._color_as_tuple(artist.cmap.colors[1]) == (1.0, 0.0, 0.0) assert self._color_as_tuple(artist.cmap.colors[2]) == (1.0, 1.0, 1.0) # the last color is now under "over" assert self._color_as_tuple(artist.cmap._rgba_over) == (0.0, 0.0, 1.0) def test_cmap_and_color_both(self): with pytest.raises(ValueError): self.plotmethod(colors="k", cmap="RdBu") def list_of_colors_in_cmap_raises_error(self): with pytest.raises(ValueError, match=r"list of colors"): self.plotmethod(cmap=["k", "b"]) @pytest.mark.slow def test_2d_coord_names(self): self.plotmethod(x="x2d", y="y2d") # make sure labels came out ok ax = plt.gca() assert "x2d" == ax.get_xlabel() assert "y2d" == ax.get_ylabel() def test_single_level(self): # this used to raise an error, but not anymore since # add_colorbar defaults to false self.plotmethod(levels=[0.1]) self.plotmethod(levels=1) class TestPcolormesh(Common2dMixin, PlotTestCase): plotfunc = staticmethod(xplt.pcolormesh) def test_primitive_artist_returned(self): artist = self.plotmethod() assert isinstance(artist, mpl.collections.QuadMesh) def test_everything_plotted(self): artist = self.plotmethod() assert artist.get_array().size == self.darray.size @pytest.mark.slow def test_2d_coord_names(self): self.plotmethod(x="x2d", y="y2d") # make sure labels came out ok ax = plt.gca() assert "x2d" == ax.get_xlabel() assert "y2d" == ax.get_ylabel() def test_dont_infer_interval_breaks_for_cartopy(self): # Regression for GH 781 ax = plt.gca() # Simulate a Cartopy Axis setattr(ax, "projection", True) artist = self.plotmethod(x="x2d", y="y2d", ax=ax) assert isinstance(artist, mpl.collections.QuadMesh) # Let cartopy handle the axis limits and artist size assert artist.get_array().size <= self.darray.size class TestPcolormeshLogscale(PlotTestCase): """ Test pcolormesh axes when x and y are in logscale """ plotfunc = staticmethod(xplt.pcolormesh) @pytest.fixture(autouse=True) def setUp(self): self.boundaries = (-1, 9, -4, 3) shape = (8, 11) x = np.logspace(self.boundaries[0], self.boundaries[1], shape[1]) y = np.logspace(self.boundaries[2], self.boundaries[3], shape[0]) da = DataArray( easy_array(shape, start=-1), dims=["y", "x"], coords={"y": y, "x": x}, name="testvar", ) self.darray = da def test_interval_breaks_logspace(self): """ Check if the outer vertices of the pcolormesh are the expected values Checks bugfix for #5333 """ artist = self.darray.plot.pcolormesh(xscale="log", yscale="log") # Grab the coordinates of the vertices of the Patches x_vertices = [p.vertices[:, 0] for p in artist.properties()["paths"]] y_vertices = [p.vertices[:, 1] for p in artist.properties()["paths"]] # Get the maximum and minimum values for each set of vertices xmin, xmax = np.min(x_vertices), np.max(x_vertices) ymin, ymax = np.min(y_vertices), np.max(y_vertices) # Check if they are equal to 10 to the power of the outer value of its # corresponding axis plus or minus the interval in the logspace log_interval = 0.5 np.testing.assert_allclose(xmin, 10 ** (self.boundaries[0] - log_interval)) np.testing.assert_allclose(xmax, 10 ** (self.boundaries[1] + log_interval)) np.testing.assert_allclose(ymin, 10 ** (self.boundaries[2] - log_interval)) np.testing.assert_allclose(ymax, 10 ** (self.boundaries[3] + log_interval)) @pytest.mark.slow class TestImshow(Common2dMixin, PlotTestCase): plotfunc = staticmethod(xplt.imshow) @pytest.mark.slow def test_imshow_called(self): # Having both statements ensures the test works properly assert not self.imshow_called(self.darray.plot.contourf) assert self.imshow_called(self.darray.plot.imshow) def test_xy_pixel_centered(self): self.darray.plot.imshow(yincrease=False) assert np.allclose([-0.5, 14.5], plt.gca().get_xlim()) assert np.allclose([9.5, -0.5], plt.gca().get_ylim()) def test_default_aspect_is_auto(self): self.darray.plot.imshow() assert "auto" == plt.gca().get_aspect() @pytest.mark.slow def test_cannot_change_mpl_aspect(self): with pytest.raises(ValueError, match=r"not available in xarray"): self.darray.plot.imshow(aspect="equal") # with numbers we fall back to fig control self.darray.plot.imshow(size=5, aspect=2) assert "auto" == plt.gca().get_aspect() assert tuple(plt.gcf().get_size_inches()) == (10, 5) @pytest.mark.slow def test_primitive_artist_returned(self): artist = self.plotmethod() assert isinstance(artist, mpl.image.AxesImage) @pytest.mark.slow @requires_seaborn def test_seaborn_palette_needs_levels(self): with pytest.raises(ValueError): self.plotmethod(cmap="husl") def test_2d_coord_names(self): with pytest.raises(ValueError, match=r"requires 1D coordinates"): self.plotmethod(x="x2d", y="y2d") def test_plot_rgb_image(self): DataArray( easy_array((10, 15, 3), start=0), dims=["y", "x", "band"] ).plot.imshow() assert 0 == len(find_possible_colorbars()) def test_plot_rgb_image_explicit(self): DataArray( easy_array((10, 15, 3), start=0), dims=["y", "x", "band"] ).plot.imshow(y="y", x="x", rgb="band") assert 0 == len(find_possible_colorbars()) def test_plot_rgb_faceted(self): DataArray( easy_array((2, 2, 10, 15, 3), start=0), dims=["a", "b", "y", "x", "band"] ).plot.imshow(row="a", col="b") assert 0 == len(find_possible_colorbars()) def test_plot_rgba_image_transposed(self): # We can handle the color axis being in any position DataArray( easy_array((4, 10, 15), start=0), dims=["band", "y", "x"] ).plot.imshow() def test_warns_ambigious_dim(self): arr = DataArray(easy_array((3, 3, 3)), dims=["y", "x", "band"]) with pytest.warns(UserWarning): arr.plot.imshow() # but doesn't warn if dimensions specified arr.plot.imshow(rgb="band") arr.plot.imshow(x="x", y="y") def test_rgb_errors_too_many_dims(self): arr = DataArray(easy_array((3, 3, 3, 3)), dims=["y", "x", "z", "band"]) with pytest.raises(ValueError): arr.plot.imshow(rgb="band") def test_rgb_errors_bad_dim_sizes(self): arr = DataArray(easy_array((5, 5, 5)), dims=["y", "x", "band"]) with pytest.raises(ValueError): arr.plot.imshow(rgb="band") def test_normalize_rgb_imshow(self): for kwargs in ( dict(vmin=-1), dict(vmax=2), dict(vmin=-1, vmax=1), dict(vmin=0, vmax=0), dict(vmin=0, robust=True), dict(vmax=-1, robust=True), ): da = DataArray(easy_array((5, 5, 3), start=-0.6, stop=1.4)) arr = da.plot.imshow(**kwargs).get_array() assert 0 <= arr.min() <= arr.max() <= 1, kwargs def test_normalize_rgb_one_arg_error(self): da = DataArray(easy_array((5, 5, 3), start=-0.6, stop=1.4)) # If passed one bound that implies all out of range, error: for kwargs in [dict(vmax=-1), dict(vmin=2)]: with pytest.raises(ValueError): da.plot.imshow(**kwargs) # If passed two that's just moving the range, *not* an error: for kwargs in [dict(vmax=-1, vmin=-1.2), dict(vmin=2, vmax=2.1)]: da.plot.imshow(**kwargs) def test_imshow_rgb_values_in_valid_range(self): da = DataArray(np.arange(75, dtype="uint8").reshape((5, 5, 3))) _, ax = plt.subplots() out = da.plot.imshow(ax=ax).get_array() assert out.dtype == np.uint8 assert (out[..., :3] == da.values).all() # Compare without added alpha @pytest.mark.filterwarnings("ignore:Several dimensions of this array") def test_regression_rgb_imshow_dim_size_one(self): # Regression: https://github.com/pydata/xarray/issues/1966 da = DataArray(easy_array((1, 3, 3), start=0.0, stop=1.0)) da.plot.imshow() def test_origin_overrides_xyincrease(self): da = DataArray(easy_array((3, 2)), coords=[[-2, 0, 2], [-1, 1]]) with figure_context(): da.plot.imshow(origin="upper") assert plt.xlim()[0] < 0 assert plt.ylim()[1] < 0 with figure_context(): da.plot.imshow(origin="lower") assert plt.xlim()[0] < 0 assert plt.ylim()[0] < 0 class TestSurface(Common2dMixin, PlotTestCase): plotfunc = staticmethod(xplt.surface) subplot_kws = {"projection": "3d"} def test_primitive_artist_returned(self): artist = self.plotmethod() assert isinstance(artist, mpl_toolkits.mplot3d.art3d.Poly3DCollection) @pytest.mark.slow def test_2d_coord_names(self): self.plotmethod(x="x2d", y="y2d") # make sure labels came out ok ax = plt.gca() assert "x2d" == ax.get_xlabel() assert "y2d" == ax.get_ylabel() assert f"{self.darray.long_name} [{self.darray.units}]" == ax.get_zlabel() def test_xyincrease_false_changes_axes(self): # Does not make sense for surface plots pytest.skip("does not make sense for surface plots") def test_xyincrease_true_changes_axes(self): # Does not make sense for surface plots pytest.skip("does not make sense for surface plots") def test_can_pass_in_axis(self): self.pass_in_axis(self.plotmethod, subplot_kw={"projection": "3d"}) def test_default_cmap(self): # Does not make sense for surface plots with default arguments pytest.skip("does not make sense for surface plots") def test_diverging_color_limits(self): # Does not make sense for surface plots with default arguments pytest.skip("does not make sense for surface plots") def test_colorbar_kwargs(self): # Does not make sense for surface plots with default arguments pytest.skip("does not make sense for surface plots") def test_cmap_and_color_both(self): # Does not make sense for surface plots with default arguments pytest.skip("does not make sense for surface plots") def test_seaborn_palette_as_cmap(self): # seaborn does not work with mpl_toolkits.mplot3d with pytest.raises(ValueError): super().test_seaborn_palette_as_cmap() # Need to modify this test for surface(), because all subplots should have labels, # not just left and bottom @pytest.mark.filterwarnings("ignore:tight_layout cannot") def test_convenient_facetgrid(self): a = easy_array((10, 15, 4)) d = DataArray(a, dims=["y", "x", "z"]) g = self.plotfunc(d, x="x", y="y", col="z", col_wrap=2) assert_array_equal(g.axes.shape, [2, 2]) for (y, x), ax in np.ndenumerate(g.axes): assert ax.has_data() assert "y" == ax.get_ylabel() assert "x" == ax.get_xlabel() # Infering labels g = self.plotfunc(d, col="z", col_wrap=2) assert_array_equal(g.axes.shape, [2, 2]) for (y, x), ax in np.ndenumerate(g.axes): assert ax.has_data() assert "y" == ax.get_ylabel() assert "x" == ax.get_xlabel() def test_viridis_cmap(self): return super().test_viridis_cmap() def test_can_change_default_cmap(self): return super().test_can_change_default_cmap() def test_colorbar_default_label(self): return super().test_colorbar_default_label() def test_facetgrid_map_only_appends_mappables(self): return super().test_facetgrid_map_only_appends_mappables() class TestFacetGrid(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): d = easy_array((10, 15, 3)) self.darray = DataArray(d, dims=["y", "x", "z"], coords={"z": ["a", "b", "c"]}) self.g = xplt.FacetGrid(self.darray, col="z") @pytest.mark.slow def test_no_args(self): self.g.map_dataarray(xplt.contourf, "x", "y") # Don't want colorbar labeled with 'None' alltxt = text_in_fig() assert "None" not in alltxt for ax in self.g.axes.flat: assert ax.has_data() @pytest.mark.slow def test_names_appear_somewhere(self): self.darray.name = "testvar" self.g.map_dataarray(xplt.contourf, "x", "y") for k, ax in zip("abc", self.g.axes.flat): assert f"z = {k}" == ax.get_title() alltxt = text_in_fig() assert self.darray.name in alltxt for label in ["x", "y"]: assert label in alltxt @pytest.mark.slow def test_text_not_super_long(self): self.darray.coords["z"] = [100 * letter for letter in "abc"] g = xplt.FacetGrid(self.darray, col="z") g.map_dataarray(xplt.contour, "x", "y") alltxt = text_in_fig() maxlen = max(len(txt) for txt in alltxt) assert maxlen < 50 t0 = g.axes[0, 0].get_title() assert t0.endswith("...") @pytest.mark.slow def test_colorbar(self): vmin = self.darray.values.min() vmax = self.darray.values.max() expected = np.array((vmin, vmax)) self.g.map_dataarray(xplt.imshow, "x", "y") for image in plt.gcf().findobj(mpl.image.AxesImage): clim = np.array(image.get_clim()) assert np.allclose(expected, clim) assert 1 == len(find_possible_colorbars()) @pytest.mark.slow def test_empty_cell(self): g = xplt.FacetGrid(self.darray, col="z", col_wrap=2) g.map_dataarray(xplt.imshow, "x", "y") bottomright = g.axes[-1, -1] assert not bottomright.has_data() assert not bottomright.get_visible() @pytest.mark.slow def test_norow_nocol_error(self): with pytest.raises(ValueError, match=r"[Rr]ow"): xplt.FacetGrid(self.darray) @pytest.mark.slow def test_groups(self): self.g.map_dataarray(xplt.imshow, "x", "y") upperleft_dict = self.g.name_dicts[0, 0] upperleft_array = self.darray.loc[upperleft_dict] z0 = self.darray.isel(z=0) assert_equal(upperleft_array, z0) @pytest.mark.slow def test_float_index(self): self.darray.coords["z"] = [0.1, 0.2, 0.4] g = xplt.FacetGrid(self.darray, col="z") g.map_dataarray(xplt.imshow, "x", "y") @pytest.mark.slow def test_nonunique_index_error(self): self.darray.coords["z"] = [0.1, 0.2, 0.2] with pytest.raises(ValueError, match=r"[Uu]nique"): xplt.FacetGrid(self.darray, col="z") @pytest.mark.slow def test_robust(self): z = np.zeros((20, 20, 2)) darray = DataArray(z, dims=["y", "x", "z"]) darray[:, :, 1] = 1 darray[2, 0, 0] = -1000 darray[3, 0, 0] = 1000 g = xplt.FacetGrid(darray, col="z") g.map_dataarray(xplt.imshow, "x", "y", robust=True) # Color limits should be 0, 1 # The largest number displayed in the figure should be less than 21 numbers = set() alltxt = text_in_fig() for txt in alltxt: try: numbers.add(float(txt)) except ValueError: pass largest = max(abs(x) for x in numbers) assert largest < 21 @pytest.mark.slow def test_can_set_vmin_vmax(self): vmin, vmax = 50.0, 1000.0 expected = np.array((vmin, vmax)) self.g.map_dataarray(xplt.imshow, "x", "y", vmin=vmin, vmax=vmax) for image in plt.gcf().findobj(mpl.image.AxesImage): clim = np.array(image.get_clim()) assert np.allclose(expected, clim) @pytest.mark.slow def test_vmin_vmax_equal(self): # regression test for GH3734 fg = self.g.map_dataarray(xplt.imshow, "x", "y", vmin=50, vmax=50) for mappable in fg._mappables: assert mappable.norm.vmin != mappable.norm.vmax @pytest.mark.slow @pytest.mark.filterwarnings("ignore") def test_can_set_norm(self): norm = mpl.colors.SymLogNorm(0.1) self.g.map_dataarray(xplt.imshow, "x", "y", norm=norm) for image in plt.gcf().findobj(mpl.image.AxesImage): assert image.norm is norm @pytest.mark.slow def test_figure_size(self): assert_array_equal(self.g.fig.get_size_inches(), (10, 3)) g = xplt.FacetGrid(self.darray, col="z", size=6) assert_array_equal(g.fig.get_size_inches(), (19, 6)) g = self.darray.plot.imshow(col="z", size=6) assert_array_equal(g.fig.get_size_inches(), (19, 6)) g = xplt.FacetGrid(self.darray, col="z", size=4, aspect=0.5) assert_array_equal(g.fig.get_size_inches(), (7, 4)) g = xplt.FacetGrid(self.darray, col="z", figsize=(9, 4)) assert_array_equal(g.fig.get_size_inches(), (9, 4)) with pytest.raises(ValueError, match=r"cannot provide both"): g = xplt.plot(self.darray, row=2, col="z", figsize=(6, 4), size=6) with pytest.raises(ValueError, match=r"Can't use"): g = xplt.plot(self.darray, row=2, col="z", ax=plt.gca(), size=6) @pytest.mark.slow def test_num_ticks(self): nticks = 99 maxticks = nticks + 1 self.g.map_dataarray(xplt.imshow, "x", "y") self.g.set_ticks(max_xticks=nticks, max_yticks=nticks) for ax in self.g.axes.flat: xticks = len(ax.get_xticks()) yticks = len(ax.get_yticks()) assert xticks <= maxticks assert yticks <= maxticks assert xticks >= nticks / 2.0 assert yticks >= nticks / 2.0 @pytest.mark.slow def test_map(self): assert self.g._finalized is False self.g.map(plt.contourf, "x", "y", Ellipsis) assert self.g._finalized is True self.g.map(lambda: None) @pytest.mark.slow def test_map_dataset(self): g = xplt.FacetGrid(self.darray.to_dataset(name="foo"), col="z") g.map(plt.contourf, "x", "y", "foo") alltxt = text_in_fig() for label in ["x", "y"]: assert label in alltxt # everything has a label assert "None" not in alltxt # colorbar can't be inferred automatically assert "foo" not in alltxt assert 0 == len(find_possible_colorbars()) g.add_colorbar(label="colors!") assert "colors!" in text_in_fig() assert 1 == len(find_possible_colorbars()) @pytest.mark.slow def test_set_axis_labels(self): g = self.g.map_dataarray(xplt.contourf, "x", "y") g.set_axis_labels("longitude", "latitude") alltxt = text_in_fig() for label in ["longitude", "latitude"]: assert label in alltxt @pytest.mark.slow def test_facetgrid_colorbar(self): a = easy_array((10, 15, 4)) d = DataArray(a, dims=["y", "x", "z"], name="foo") d.plot.imshow(x="x", y="y", col="z") assert 1 == len(find_possible_colorbars()) d.plot.imshow(x="x", y="y", col="z", add_colorbar=True) assert 1 == len(find_possible_colorbars()) d.plot.imshow(x="x", y="y", col="z", add_colorbar=False) assert 0 == len(find_possible_colorbars()) @pytest.mark.slow def test_facetgrid_polar(self): # test if polar projection in FacetGrid does not raise an exception self.darray.plot.pcolormesh( col="z", subplot_kws=dict(projection="polar"), sharex=False, sharey=False ) @pytest.mark.filterwarnings("ignore:tight_layout cannot") class TestFacetGrid4d(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): a = easy_array((10, 15, 3, 2)) darray = DataArray(a, dims=["y", "x", "col", "row"]) darray.coords["col"] = np.array( ["col" + str(x) for x in darray.coords["col"].values] ) darray.coords["row"] = np.array( ["row" + str(x) for x in darray.coords["row"].values] ) self.darray = darray @pytest.mark.slow def test_default_labels(self): g = xplt.FacetGrid(self.darray, col="col", row="row") assert (2, 3) == g.axes.shape g.map_dataarray(xplt.imshow, "x", "y") # Rightmost column should be labeled for label, ax in zip(self.darray.coords["row"].values, g.axes[:, -1]): assert substring_in_axes(label, ax) # Top row should be labeled for label, ax in zip(self.darray.coords["col"].values, g.axes[0, :]): assert substring_in_axes(label, ax) # ensure that row & col labels can be changed g.set_titles("abc={value}") for label, ax in zip(self.darray.coords["row"].values, g.axes[:, -1]): assert substring_in_axes(f"abc={label}", ax) # previous labels were "row=row0" etc. assert substring_not_in_axes("row=", ax) for label, ax in zip(self.darray.coords["col"].values, g.axes[0, :]): assert substring_in_axes(f"abc={label}", ax) # previous labels were "col=row0" etc. assert substring_not_in_axes("col=", ax) @pytest.mark.filterwarnings("ignore:tight_layout cannot") class TestFacetedLinePlotsLegend(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): self.darray = xr.tutorial.scatter_example_dataset() def test_legend_labels(self): fg = self.darray.A.plot.line(col="x", row="w", hue="z") all_legend_labels = [t.get_text() for t in fg.figlegend.texts] # labels in legend should be ['0', '1', '2', '3'] assert sorted(all_legend_labels) == ["0", "1", "2", "3"] @pytest.mark.filterwarnings("ignore:tight_layout cannot") class TestFacetedLinePlots(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): self.darray = DataArray( np.random.randn(10, 6, 3, 4), dims=["hue", "x", "col", "row"], coords=[range(10), range(6), range(3), ["A", "B", "C", "C++"]], name="Cornelius Ortega the 1st", ) self.darray.hue.name = "huename" self.darray.hue.attrs["units"] = "hunits" self.darray.x.attrs["units"] = "xunits" self.darray.col.attrs["units"] = "colunits" self.darray.row.attrs["units"] = "rowunits" def test_facetgrid_shape(self): g = self.darray.plot(row="row", col="col", hue="hue") assert g.axes.shape == (len(self.darray.row), len(self.darray.col)) g = self.darray.plot(row="col", col="row", hue="hue") assert g.axes.shape == (len(self.darray.col), len(self.darray.row)) def test_unnamed_args(self): g = self.darray.plot.line("o--", row="row", col="col", hue="hue") lines = [ q for q in g.axes.flat[0].get_children() if isinstance(q, mpl.lines.Line2D) ] # passing 'o--' as argument should set marker and linestyle assert lines[0].get_marker() == "o" assert lines[0].get_linestyle() == "--" def test_default_labels(self): g = self.darray.plot(row="row", col="col", hue="hue") # Rightmost column should be labeled for label, ax in zip(self.darray.coords["row"].values, g.axes[:, -1]): assert substring_in_axes(label, ax) # Top row should be labeled for label, ax in zip(self.darray.coords["col"].values, g.axes[0, :]): assert substring_in_axes(str(label), ax) # Leftmost column should have array name for ax in g.axes[:, 0]: assert substring_in_axes(self.darray.name, ax) def test_test_empty_cell(self): g = ( self.darray.isel(row=1) .drop_vars("row") .plot(col="col", hue="hue", col_wrap=2) ) bottomright = g.axes[-1, -1] assert not bottomright.has_data() assert not bottomright.get_visible() def test_set_axis_labels(self): g = self.darray.plot(row="row", col="col", hue="hue") g.set_axis_labels("longitude", "latitude") alltxt = text_in_fig() assert "longitude" in alltxt assert "latitude" in alltxt def test_axes_in_faceted_plot(self): with pytest.raises(ValueError): self.darray.plot.line(row="row", col="col", x="x", ax=plt.axes()) def test_figsize_and_size(self): with pytest.raises(ValueError): self.darray.plot.line(row="row", col="col", x="x", size=3, figsize=4) def test_wrong_num_of_dimensions(self): with pytest.raises(ValueError): self.darray.plot(row="row", hue="hue") self.darray.plot.line(row="row", hue="hue") @requires_matplotlib class TestDatasetQuiverPlots(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): das = [ DataArray( np.random.randn(3, 3, 4, 4), dims=["x", "y", "row", "col"], coords=[range(k) for k in [3, 3, 4, 4]], ) for _ in [1, 2] ] ds = Dataset({"u": das[0], "v": das[1]}) ds.x.attrs["units"] = "xunits" ds.y.attrs["units"] = "yunits" ds.col.attrs["units"] = "colunits" ds.row.attrs["units"] = "rowunits" ds.u.attrs["units"] = "uunits" ds.v.attrs["units"] = "vunits" ds["mag"] = np.hypot(ds.u, ds.v) self.ds = ds def test_quiver(self): with figure_context(): hdl = self.ds.isel(row=0, col=0).plot.quiver(x="x", y="y", u="u", v="v") assert isinstance(hdl, mpl.quiver.Quiver) with pytest.raises(ValueError, match=r"specify x, y, u, v"): self.ds.isel(row=0, col=0).plot.quiver(x="x", y="y", u="u") with pytest.raises(ValueError, match=r"hue_style"): self.ds.isel(row=0, col=0).plot.quiver( x="x", y="y", u="u", v="v", hue="mag", hue_style="discrete" ) def test_facetgrid(self): with figure_context(): fg = self.ds.plot.quiver( x="x", y="y", u="u", v="v", row="row", col="col", scale=1, hue="mag" ) for handle in fg._mappables: assert isinstance(handle, mpl.quiver.Quiver) assert "uunits" in fg.quiverkey.text.get_text() with figure_context(): fg = self.ds.plot.quiver( x="x", y="y", u="u", v="v", row="row", col="col", scale=1, hue="mag", add_guide=False, ) assert fg.quiverkey is None with pytest.raises(ValueError, match=r"Please provide scale"): self.ds.plot.quiver(x="x", y="y", u="u", v="v", row="row", col="col") @requires_matplotlib class TestDatasetStreamplotPlots(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): das = [ DataArray( np.random.randn(3, 3, 2, 2), dims=["x", "y", "row", "col"], coords=[range(k) for k in [3, 3, 2, 2]], ) for _ in [1, 2] ] ds = Dataset({"u": das[0], "v": das[1]}) ds.x.attrs["units"] = "xunits" ds.y.attrs["units"] = "yunits" ds.col.attrs["units"] = "colunits" ds.row.attrs["units"] = "rowunits" ds.u.attrs["units"] = "uunits" ds.v.attrs["units"] = "vunits" ds["mag"] = np.hypot(ds.u, ds.v) self.ds = ds def test_streamline(self): with figure_context(): hdl = self.ds.isel(row=0, col=0).plot.streamplot(x="x", y="y", u="u", v="v") assert isinstance(hdl, mpl.collections.LineCollection) with pytest.raises(ValueError, match=r"specify x, y, u, v"): self.ds.isel(row=0, col=0).plot.streamplot(x="x", y="y", u="u") with pytest.raises(ValueError, match=r"hue_style"): self.ds.isel(row=0, col=0).plot.streamplot( x="x", y="y", u="u", v="v", hue="mag", hue_style="discrete" ) def test_facetgrid(self): with figure_context(): fg = self.ds.plot.streamplot( x="x", y="y", u="u", v="v", row="row", col="col", hue="mag" ) for handle in fg._mappables: assert isinstance(handle, mpl.collections.LineCollection) with figure_context(): fg = self.ds.plot.streamplot( x="x", y="y", u="u", v="v", row="row", col="col", hue="mag", add_guide=False, ) @requires_matplotlib class TestDatasetScatterPlots(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): das = [ DataArray( np.random.randn(3, 3, 4, 4), dims=["x", "row", "col", "hue"], coords=[range(k) for k in [3, 3, 4, 4]], ) for _ in [1, 2] ] ds = Dataset({"A": das[0], "B": das[1]}) ds.hue.name = "huename" ds.hue.attrs["units"] = "hunits" ds.x.attrs["units"] = "xunits" ds.col.attrs["units"] = "colunits" ds.row.attrs["units"] = "rowunits" ds.A.attrs["units"] = "Aunits" ds.B.attrs["units"] = "Bunits" self.ds = ds def test_accessor(self): from ..plot.dataset_plot import _Dataset_PlotMethods assert Dataset.plot is _Dataset_PlotMethods assert isinstance(self.ds.plot, _Dataset_PlotMethods) @pytest.mark.parametrize( "add_guide, hue_style, legend, colorbar", [ (None, None, False, True), (False, None, False, False), (True, None, False, True), (True, "continuous", False, True), (False, "discrete", False, False), (True, "discrete", True, False), ], ) def test_add_guide(self, add_guide, hue_style, legend, colorbar): meta_data = _infer_meta_data( self.ds, x="A", y="B", hue="hue", hue_style=hue_style, add_guide=add_guide, funcname="scatter", ) assert meta_data["add_legend"] is legend assert meta_data["add_colorbar"] is colorbar def test_facetgrid_shape(self): g = self.ds.plot.scatter(x="A", y="B", row="row", col="col") assert g.axes.shape == (len(self.ds.row), len(self.ds.col)) g = self.ds.plot.scatter(x="A", y="B", row="col", col="row") assert g.axes.shape == (len(self.ds.col), len(self.ds.row)) def test_default_labels(self): g = self.ds.plot.scatter("A", "B", row="row", col="col", hue="hue") # Top row should be labeled for label, ax in zip(self.ds.coords["col"].values, g.axes[0, :]): assert substring_in_axes(str(label), ax) # Bottom row should have name of x array name and units for ax in g.axes[-1, :]: assert ax.get_xlabel() == "A [Aunits]" # Leftmost column should have name of y array name and units for ax in g.axes[:, 0]: assert ax.get_ylabel() == "B [Bunits]" def test_axes_in_faceted_plot(self): with pytest.raises(ValueError): self.ds.plot.scatter(x="A", y="B", row="row", ax=plt.axes()) def test_figsize_and_size(self): with pytest.raises(ValueError): self.ds.plot.scatter(x="A", y="B", row="row", size=3, figsize=4) @pytest.mark.parametrize( "x, y, hue_style, add_guide", [ ("A", "B", "something", True), ("A", "B", "discrete", True), ("A", "B", None, True), ("A", "The Spanish Inquisition", None, None), ("The Spanish Inquisition", "B", None, True), ], ) def test_bad_args(self, x, y, hue_style, add_guide): with pytest.raises(ValueError): self.ds.plot.scatter(x, y, hue_style=hue_style, add_guide=add_guide) @pytest.mark.xfail(reason="datetime,timedelta hue variable not supported.") @pytest.mark.parametrize("hue_style", ["discrete", "continuous"]) def test_datetime_hue(self, hue_style): ds2 = self.ds.copy() ds2["hue"] = pd.date_range("2000-1-1", periods=4) ds2.plot.scatter(x="A", y="B", hue="hue", hue_style=hue_style) ds2["hue"] = pd.timedelta_range("-1D", periods=4, freq="D") ds2.plot.scatter(x="A", y="B", hue="hue", hue_style=hue_style) def test_facetgrid_hue_style(self): # Can't move this to pytest.mark.parametrize because py37-bare-minimum # doesn't have matplotlib. for hue_style, map_type in ( ("discrete", list), ("continuous", mpl.collections.PathCollection), ): g = self.ds.plot.scatter( x="A", y="B", row="row", col="col", hue="hue", hue_style=hue_style ) # for 'discrete' a list is appended to _mappables # for 'continuous', should be single PathCollection assert isinstance(g._mappables[-1], map_type) @pytest.mark.parametrize( "x, y, hue, markersize", [("A", "B", "x", "col"), ("x", "row", "A", "B")] ) def test_scatter(self, x, y, hue, markersize): self.ds.plot.scatter(x, y, hue=hue, markersize=markersize) with pytest.raises(ValueError, match=r"u, v"): self.ds.plot.scatter(x, y, u="col", v="row") def test_non_numeric_legend(self): ds2 = self.ds.copy() ds2["hue"] = ["a", "b", "c", "d"] lines = ds2.plot.scatter(x="A", y="B", hue="hue") # should make a discrete legend assert lines[0].axes.legend_ is not None # and raise an error if explicitly not allowed to do so with pytest.raises(ValueError): ds2.plot.scatter(x="A", y="B", hue="hue", hue_style="continuous") def test_legend_labels(self): # regression test for #4126: incorrect legend labels ds2 = self.ds.copy() ds2["hue"] = ["a", "a", "b", "b"] lines = ds2.plot.scatter(x="A", y="B", hue="hue") assert [t.get_text() for t in lines[0].axes.get_legend().texts] == ["a", "b"] def test_legend_labels_facetgrid(self): ds2 = self.ds.copy() ds2["hue"] = ["d", "a", "c", "b"] g = ds2.plot.scatter(x="A", y="B", hue="hue", col="col") legend_labels = tuple(t.get_text() for t in g.figlegend.texts) attached_labels = [ tuple(m.get_label() for m in mappables_per_ax) for mappables_per_ax in g._mappables ] assert list(set(attached_labels)) == [legend_labels] def test_add_legend_by_default(self): sc = self.ds.plot.scatter(x="A", y="B", hue="hue") assert len(sc.figure.axes) == 2 class TestDatetimePlot(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): """ Create a DataArray with a time-axis that contains datetime objects. """ month = np.arange(1, 13, 1) data = np.sin(2 * np.pi * month / 12.0) darray = DataArray(data, dims=["time"]) darray.coords["time"] = np.array([datetime(2017, m, 1) for m in month]) self.darray = darray def test_datetime_line_plot(self): # test if line plot raises no Exception self.darray.plot.line() @pytest.mark.filterwarnings("ignore:setting an array element with a sequence") @requires_nc_time_axis @requires_cftime class TestCFDatetimePlot(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): """ Create a DataArray with a time-axis that contains cftime.datetime objects. """ # case for 1d array data = np.random.rand(4, 12) time = xr.cftime_range(start="2017", periods=12, freq="1M", calendar="noleap") darray = DataArray(data, dims=["x", "time"]) darray.coords["time"] = time self.darray = darray def test_cfdatetime_line_plot(self): self.darray.isel(x=0).plot.line() def test_cfdatetime_pcolormesh_plot(self): self.darray.plot.pcolormesh() def test_cfdatetime_contour_plot(self): self.darray.plot.contour() @requires_cftime @pytest.mark.skipif(has_nc_time_axis, reason="nc_time_axis is installed") class TestNcAxisNotInstalled(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): """ Create a DataArray with a time-axis that contains cftime.datetime objects. """ month = np.arange(1, 13, 1) data = np.sin(2 * np.pi * month / 12.0) darray = DataArray(data, dims=["time"]) darray.coords["time"] = xr.cftime_range( start="2017", periods=12, freq="1M", calendar="noleap" ) self.darray = darray def test_ncaxis_notinstalled_line_plot(self): with pytest.raises(ImportError, match=r"optional `nc-time-axis`"): self.darray.plot.line() @requires_matplotlib class TestAxesKwargs: @pytest.fixture(params=[1, 2, 3]) def data_array(self, request): """ Return a simple DataArray """ dims = request.param if dims == 1: return DataArray(easy_array((10,))) if dims == 2: return DataArray(easy_array((10, 3))) if dims == 3: return DataArray(easy_array((10, 3, 2))) @pytest.fixture(params=[1, 2]) def data_array_logspaced(self, request): """ Return a simple DataArray with logspaced coordinates """ dims = request.param if dims == 1: return DataArray( np.arange(7), dims=("x",), coords={"x": np.logspace(-3, 3, 7)} ) if dims == 2: return DataArray( np.arange(16).reshape(4, 4), dims=("y", "x"), coords={"x": np.logspace(-1, 2, 4), "y": np.logspace(-5, -1, 4)}, ) @pytest.mark.parametrize("xincrease", [True, False]) def test_xincrease_kwarg(self, data_array, xincrease): with figure_context(): data_array.plot(xincrease=xincrease) assert plt.gca().xaxis_inverted() == (not xincrease) @pytest.mark.parametrize("yincrease", [True, False]) def test_yincrease_kwarg(self, data_array, yincrease): with figure_context(): data_array.plot(yincrease=yincrease) assert plt.gca().yaxis_inverted() == (not yincrease) @pytest.mark.parametrize("xscale", ["linear", "logit", "symlog"]) def test_xscale_kwarg(self, data_array, xscale): with figure_context(): data_array.plot(xscale=xscale) assert plt.gca().get_xscale() == xscale @pytest.mark.parametrize("yscale", ["linear", "logit", "symlog"]) def test_yscale_kwarg(self, data_array, yscale): with figure_context(): data_array.plot(yscale=yscale) assert plt.gca().get_yscale() == yscale def test_xscale_log_kwarg(self, data_array_logspaced): xscale = "log" with figure_context(): data_array_logspaced.plot(xscale=xscale) assert plt.gca().get_xscale() == xscale def test_yscale_log_kwarg(self, data_array_logspaced): yscale = "log" with figure_context(): data_array_logspaced.plot(yscale=yscale) assert plt.gca().get_yscale() == yscale def test_xlim_kwarg(self, data_array): with figure_context(): expected = (0.0, 1000.0) data_array.plot(xlim=[0, 1000]) assert plt.gca().get_xlim() == expected def test_ylim_kwarg(self, data_array): with figure_context(): data_array.plot(ylim=[0, 1000]) expected = (0.0, 1000.0) assert plt.gca().get_ylim() == expected def test_xticks_kwarg(self, data_array): with figure_context(): data_array.plot(xticks=np.arange(5)) expected = np.arange(5).tolist() assert_array_equal(plt.gca().get_xticks(), expected) def test_yticks_kwarg(self, data_array): with figure_context(): data_array.plot(yticks=np.arange(5)) expected = np.arange(5) assert_array_equal(plt.gca().get_yticks(), expected) @requires_matplotlib @pytest.mark.parametrize("plotfunc", ["pcolormesh", "contourf", "contour"]) def test_plot_transposed_nondim_coord(plotfunc): x = np.linspace(0, 10, 101) h = np.linspace(3, 7, 101) s = np.linspace(0, 1, 51) z = s[:, np.newaxis] * h[np.newaxis, :] da = xr.DataArray( np.sin(x) * np.cos(z), dims=["s", "x"], coords={"x": x, "s": s, "z": (("s", "x"), z), "zt": (("x", "s"), z.T)}, ) with figure_context(): getattr(da.plot, plotfunc)(x="x", y="zt") with figure_context(): getattr(da.plot, plotfunc)(x="zt", y="x") @requires_matplotlib @pytest.mark.parametrize("plotfunc", ["pcolormesh", "imshow"]) def test_plot_transposes_properly(plotfunc): # test that we aren't mistakenly transposing when the 2 dimensions have equal sizes. da = xr.DataArray([np.sin(2 * np.pi / 10 * np.arange(10))] * 10, dims=("y", "x")) with figure_context(): hdl = getattr(da.plot, plotfunc)(x="x", y="y") # get_array doesn't work for contour, contourf. It returns the colormap intervals. # pcolormesh returns 1D array but imshow returns a 2D array so it is necessary # to ravel() on the LHS assert_array_equal(hdl.get_array().ravel(), da.to_masked_array().ravel()) @requires_matplotlib def test_facetgrid_single_contour(): # regression test for GH3569 x, y = np.meshgrid(np.arange(12), np.arange(12)) z = xr.DataArray(np.sqrt(x ** 2 + y ** 2)) z2 = xr.DataArray(np.sqrt(x ** 2 + y ** 2) + 1) ds = xr.concat([z, z2], dim="time") ds["time"] = [0, 1] with figure_context(): ds.plot.contour(col="time", levels=[4], colors=["k"]) @requires_matplotlib def test_get_axis(): # test get_axis works with different args combinations # and return the right type # cannot provide both ax and figsize with pytest.raises(ValueError, match="both `figsize` and `ax`"): get_axis(figsize=[4, 4], size=None, aspect=None, ax="something") # cannot provide both ax and size with pytest.raises(ValueError, match="both `size` and `ax`"): get_axis(figsize=None, size=200, aspect=4 / 3, ax="something") # cannot provide both size and figsize with pytest.raises(ValueError, match="both `figsize` and `size`"): get_axis(figsize=[4, 4], size=200, aspect=None, ax=None) # cannot provide aspect and size with pytest.raises(ValueError, match="`aspect` argument without `size`"): get_axis(figsize=None, size=None, aspect=4 / 3, ax=None) with figure_context(): ax = get_axis() assert isinstance(ax, mpl.axes.Axes) @requires_cartopy def test_get_axis_cartopy(): kwargs = {"projection": cartopy.crs.PlateCarree()} with figure_context(): ax = get_axis(**kwargs) assert isinstance(ax, cartopy.mpl.geoaxes.GeoAxesSubplot) @requires_matplotlib def test_maybe_gca(): with figure_context(): ax = _maybe_gca(aspect=1) assert isinstance(ax, mpl.axes.Axes) assert ax.get_aspect() == 1 with figure_context(): # create figure without axes plt.figure() ax = _maybe_gca(aspect=1) assert isinstance(ax, mpl.axes.Axes) assert ax.get_aspect() == 1 with figure_context(): existing_axes = plt.axes() ax = _maybe_gca(aspect=1) # re-uses the existing axes assert existing_axes == ax # kwargs are ignored when reusing axes assert ax.get_aspect() == "auto" @requires_matplotlib @pytest.mark.parametrize( "x, y, z, hue, markersize, row, col, add_legend, add_colorbar", [ ("A", "B", None, None, None, None, None, None, None), ("B", "A", None, "w", None, None, None, True, None), ("A", "B", None, "y", "x", None, None, True, True), ("A", "B", "z", None, None, None, None, None, None), ("B", "A", "z", "w", None, None, None, True, None), ("A", "B", "z", "y", "x", None, None, True, True), ("A", "B", "z", "y", "x", "w", None, True, True), ], ) def test_datarray_scatter(x, y, z, hue, markersize, row, col, add_legend, add_colorbar): """Test datarray scatter. Merge with TestPlot1D eventually.""" ds = xr.tutorial.scatter_example_dataset() extra_coords = [v for v in [x, hue, markersize] if v is not None] # Base coords: coords = dict(ds.coords) # Add extra coords to the DataArray: coords.update({v: ds[v] for v in extra_coords}) darray = xr.DataArray(ds[y], coords=coords) with figure_context(): darray.plot._scatter( x=x, z=z, hue=hue, markersize=markersize, add_legend=add_legend, add_colorbar=add_colorbar, )