MPI_Get

Get data from a memory window on a remote process

Synopsis

int MPI_Get(void *origin_addr, int origin_count, MPI_Datatype
            origin_datatype, int target_rank, MPI_Aint target_disp,
            int target_count, MPI_Datatype target_datatype, MPI_Win win)

Input Parameters

origin_addr
Address of the buffer in which to receive the data
origin_count
number of entries in origin buffer (nonnegative integer)
origin_datatype
datatype of each entry in origin buffer (handle)
target_rank
rank of target (nonnegative integer)
target_disp
displacement from window start to the beginning of the target buffer (nonnegative integer)
target_count
number of entries in target buffer (nonnegative integer)
target_datatype
datatype of each entry in target buffer (handle)
win
window object used for communication (handle)

Thread and Interrupt Safety

This routine is thread-safe. This means that this routine may be safely used by multiple threads without the need for any user-provided thread locks. However, the routine is not interrupt safe. Typically, this is due to the use of memory allocation routines such as malloc or other non-MPICH runtime routines that are themselves not interrupt-safe.

Notes for Fortran

All MPI routines in Fortran (except for MPI_WTIME and MPI_WTICK) have an additional argument ierr at the end of the argument list. ierr is an integer and has the same meaning as the return value of the routine in C. In Fortran, MPI routines are subroutines, and are invoked with the call statement.

All MPI objects (e.g., MPI_Datatype, MPI_Comm) are of type INTEGER in Fortran.

Errors

All MPI routines (except MPI_Wtime and MPI_Wtick) return an error value; C routines as the value of the function and Fortran routines in the last argument. Before the value is returned, the current MPI error handler is called. By default, this error handler aborts the MPI job. The error handler may be changed with MPI_Comm_set_errhandler (for communicators), MPI_File_set_errhandler (for files), and MPI_Win_set_errhandler (for RMA windows). The MPI-1 routine MPI_Errhandler_set may be used but its use is deprecated. The predefined error handler MPI_ERRORS_RETURN may be used to cause error values to be returned. Note that MPI does not guarentee that an MPI program can continue past an error; however, MPI implementations will attempt to continue whenever possible.

MPI_SUCCESS
No error; MPI routine completed successfully.
MPI_ERR_ARG
Invalid argument. Some argument is invalid and is not identified by a specific error class (e.g., MPI_ERR_RANK).
MPI_ERR_COUNT
Invalid count argument. Count arguments must be non-negative; a count of zero is often valid.
MPI_ERR_RANK
Invalid source or destination rank. Ranks must be between zero and the size of the communicator minus one; ranks in a receive (MPI_Recv, MPI_Irecv, MPI_Sendrecv, etc.) may also be MPI_ANY_SOURCE.
MPI_ERR_TYPE
Invalid datatype argument. Additionally, this error can occur if an uncommitted MPI_Datatype (see MPI_Type_commit) is used in a communication call.
MPI_ERR_WIN
Invalid MPI window object

See Also

MPI_Rget