from sentinelhub import SHConfig, MimeType, CRS, BBox, DataCollection, SentinelHubRequest, bbox_to_dimensions import numpy as np from rasterio import features import geojson from shapely.geometry import shape # Sentinel Hub configuration config = SHConfig() config.sh_client_id = '2a2bea5f-7441-4631-87b6-92fb461cdc85' config.sh_client_secret = 'o889KWLdDrlEgJhxqkUnpx2hvO6QnWHS' def detect_sugarcane(bbox_coordinates, time_interval=('2024-07-01', '2025-02-11')): """ Enhanced sugarcane detection using multi-index analysis and green band Parameters: bbox_coordinates: tuple (west, south, east, north) in WGS84 time_interval: tuple (start_date, end_date) Returns: GeoJSON FeatureCollection """ # Initialize request bbox = BBox(bbox=bbox_coordinates, crs=CRS.WGS84) size = bbox_to_dimensions(bbox, resolution=10) evalscript = """ //VERSION=3 function setup() { return { input: ["B03", "B04", "B05", "B06", "B08", "B11", "B12", "SCL"], output: { bands: 8 } }; } function evaluatePixel(sample) { return [ sample.B03, sample.B04, sample.B05, sample.B06, sample.B08, sample.B11, sample.B12, sample.SCL ]; } """ request = SentinelHubRequest( evalscript=evalscript, input_data=[ SentinelHubRequest.input_data( data_collection=DataCollection.SENTINEL2_L2A, time_interval=time_interval, mosaicking_order='leastCC' ) ], responses=[ SentinelHubRequest.output_response('default', MimeType.TIFF) ], bbox=bbox, size=size, config=config ) # Process data data = request.get_data()[0] green = data[:, :, 0] red = data[:, :, 1] red_edge1 = data[:, :, 2] red_edge2 = data[:, :, 3] nir = data[:, :, 4] swir1 = data[:, :, 5] swir2 = data[:, :, 6] scl = data[:, :, 7] # Cloud masking cloud_mask = (scl != 8) & (scl != 9) & (scl != 4) & (scl != 10) # Calculate indices ndvi = (nir - red) / (nir + red + 1e-6) ndre = (nir - red_edge1) / (nir + red_edge1 + 1e-6) ndwi = (green - nir) / (green + nir + 1e-6) ndmi = (nir - swir1) / (nir + swir1 + 1e-6) # Sugarcane spectral thresholds sugarcane_mask = ( (ndvi > 0.6) & (ndre > 0.4) & (ndwi < 0.2) & (ndmi < 0.15) & cloud_mask ) # Calculate affine transform west, south, east, north = bbox_coordinates width, height = size pixel_width = (east - west) / width pixel_height = (south - north) / height transform = (west, pixel_width, 0, north, 0, -pixel_height) # Vectorization shapes = features.shapes(sugarcane_mask.astype(np.int16), transform=transform) features_list = [] for shape, value in shapes: if value == 1: geom = shape(shape.__geo_interface__) if geom.area > 10000: # Minimum field size (1 hectare) features_list.append( geojson.Feature(geometry=geom.__geo_interface__, properties={ 'ndvi': float(ndvi[int(geom.centroid.y), int(geom.centroid.x)]), 'ndre': float(ndre[int(geom.centroid.y), int(geom.centroid.x)]) }) ) return geojson.FeatureCollection(features_list) # Example usage if __name__ == "__main__": # Define bounding box (WGS84 coordinates) bbox = (16.599503, 75.207556, 16.660316, 75.293479) # Example area # Detect sugarcane sugarcane_geojson = detect_sugarcane(bbox) # Save to file with open('sugarcane.geojson', 'w') as f: geojson.dump(sugarcane_geojson, f)