import firebase_admin from firebase_admin import credentials from firebase_admin import db from firebase_admin import messaging import time import threading import pandas as pd from google.cloud import storage import os from firebase_admin import db from google.oauth2 import service_account import traceback from datetime import date import rasterio from rasterio.transform import from_bounds from PIL import Image import numpy as np def png_to_geotiff(png_path, geotiff_path, min_lat, max_lat, min_long, max_long): """ Converts a PNG image into a GeoTIFF image with specified geographic bounds. Parameters: png_path (str): Path to the input PNG image. geotiff_path (str): Path to save the output GeoTIFF image. min_lat (float): Minimum latitude of the bounding box. max_lat (float): Maximum latitude of the bounding box. min_long (float): Minimum longitude of the bounding box. max_long (float): Maximum longitude of the bounding box. """ # Open the PNG image img = Image.open(png_path).convert("RGBA") # Convert to RGBA to ensure consistency img_array = np.array(img) # Extract bands if img_array.shape[2] == 4: # RGBA bands = [img_array[:, :, i] for i in range(4)] # Separate into R, G, B, A else: bands = [img_array[:, :, i] for i in range(3)] # RGB only # Define transformation matrix transform = from_bounds(min_long, min_lat, max_long, max_lat, img.width, img.height) # Define metadata meta = { "driver": "GTiff", "dtype": rasterio.uint8, "count": len(bands), "height": img.height, "width": img.width, "transform": transform, "crs": "EPSG:4326", # WGS 84 projection } # Write to GeoTIFF with rasterio.open(geotiff_path, "w", **meta) as dst: for i, band in enumerate(bands, start=1): dst.write(band, i) # Example usage: # png_to_geotiff("input.png", "output.tif", min_lat, max_lat, min_long, max_long) storage_client = storage.Client.from_service_account_json("servicekey.json"); bucket_name = 'farmbase-b2f7e.appspot.com' cred = credentials.Certificate('servicekey.json') try: firebase_admin.initialize_app(cred, {'databaseURL': 'https://farmbase-b2f7e-31c0c.firebaseio.com/'}) except: print('fire running') uid= 'TCXcp5VIsfhHZrh0nm2VsgBtcGy2' # uid = 'GKHgYyj2wHTJ1tDvtTBAU841s9L2' # uid = 'XSzwRsmzu4OeCm8UvllGn7xsnOk1' # uid = '4bsSM4efIGhVVmOUyJv8DshNxYG3' url = 'https://us-central1-farmbase-b2f7e.cloudfunctions.net/getMyUsage' from firebase_admin import credentials, auth from google.cloud import storage def download_image_from_firebase(bucket_name, file_path, destination_path): """ Downloads an image from Firebase Storage. :param bucket_name: The name of the Firebase Storage bucket. :param file_path: The path of the image in the bucket. :param destination_path: The local path where the image will be saved. """ try: # Initialize a client client = storage.Client() # Get the storage bucket bucket = client.bucket(bucket_name) # Get the blob (file) blob = bucket.blob(file_path) # Download the file blob.download_to_filename(destination_path) print(f"Image downloaded successfully: {destination_path}") except Exception as e: print(f"Error downloading image: {e}") # Example usage # download_image_from_firebase("your-bucket-name", "path/to/image.jpg", "local_image.jpg") uid = 'TCXcp5VIsfhHZrh0nm2VsgBtcGy2' gavl_list = db.reference('PaidMonitoredFields').child('PMF').child(uid).get(False,False) field_num = 0 for field_id, temp in gavl_list.items(): try: field_id = str(field_id) polygons_obj = db.reference('PaidMonitoredFields').child('PMF').child(uid).child(field_id).child('Polygons').get(False, False) if polygons_obj is not None: for polygon_id, val in polygons_obj.items(): polygon_id = str(polygon_id) sensed_days_obj = db.reference('PaidMonitoredFields').child('PMF').child(uid).child(field_id).child('Polygons').child(polygon_id).child('SensedDays').get() coordinates = db.reference('PaidMonitoredFields').child('PMF').child(uid).child(field_id).child('Polygons').child(polygon_id).child('Coordinates').get() lats, lngs = [], [] jan2024, jan2025 = None, None for key, val in coordinates.items(): p_lat, p_long = val["Latitude"], val["Longitude"] lats.append(p_lat) lngs.append(p_long) max_lat = max(lats) min_lat = min(lats) max_long = max(lngs) min_long = min(lngs) # file_path = f'PaidMonitoredFieldsPolygons/{uid}/{field_id}/{polygon_id}' print(polygon_id, field_id) for sensed_day, val in sensed_days_obj.items(): #print(sensed_day) sensed_day = str(sensed_day) if jan2025 is None and "202501" in sensed_day: jan2025 = str(sensed_day) download_image_from_firebase(bucket_name, f'PaidMonitoredFieldsPolygons/{uid}/{field_id}/{polygon_id}/{str(jan2025)}/NDWI.png', f'GAVL_polygons/2025/{polygon_id}.png') png_to_geotiff(f'GAVL_polygons/2025/{polygon_id}.png', f'GAVL_polygons/2025/{polygon_id}.tif', min_lat, max_lat, min_long, max_long) if jan2024 is None and "202401" in sensed_day: jan2024 = str(sensed_day) download_image_from_firebase(bucket_name, f'PaidMonitoredFieldsPolygons/{uid}/{field_id}/{polygon_id}/{str(jan2024)}/NDWI.png', f'GAVL_polygons/2024/{polygon_id}.png') png_to_geotiff(f'GAVL_polygons/2024/{polygon_id}.png', f'GAVL_polygons/2024/{polygon_id}.tif', min_lat, max_lat, min_long, max_long) if (jan2024 is not None) and (jan2025 is not None): break except: print(traceback.format_exc()) time.sleep(0.1) url = "" # time.sleep(40000)