# Copyright (C) 2012 Anaconda, Inc # SPDX-License-Identifier: BSD-3-Clause import sys from array import array from itertools import combinations from logging import DEBUG, getLogger from .constants import TRACE log = getLogger(__name__) TRUE = sys.maxsize FALSE = -TRUE class _ClauseList: """Storage for the CNF clauses, represented as a list of tuples of ints.""" def __init__(self): self._clause_list = [] # Methods append and extend are directly bound for performance reasons, # to avoid call overhead and lookups. self.append = self._clause_list.append self.extend = self._clause_list.extend def get_clause_count(self): """Return number of stored clauses.""" return len(self._clause_list) def save_state(self): """ Get state information to be able to revert temporary additions of supplementary clauses. _ClauseList: state is simply the number of clauses. """ return len(self._clause_list) def restore_state(self, saved_state): """ Restore state saved via `save_state`. Removes clauses that were added after the state has been saved. """ len_clauses = saved_state self._clause_list[len_clauses:] = [] def as_list(self): """Return clauses as a list of tuples of ints.""" return self._clause_list def as_array(self): """Return clauses as a flat int array, each clause being terminated by 0.""" clause_array = array("i") for c in self._clause_list: clause_array.extend(c) clause_array.append(0) return clause_array class _ClauseArray: """ Storage for the CNF clauses, represented as a flat int array. Each clause is terminated by int(0). """ def __init__(self): self._clause_array = array("i") # Methods append and extend are directly bound for performance reasons, # to avoid call overhead and lookups. self._array_append = self._clause_array.append self._array_extend = self._clause_array.extend def extend(self, clauses): for clause in clauses: self.append(clause) def append(self, clause): self._array_extend(clause) self._array_append(0) def get_clause_count(self): """ Return number of stored clauses. This is an O(n) operation since we don't store the number of clauses explicitly due to performance reasons (Python interpreter overhead in self.append). """ return self._clause_array.count(0) def save_state(self): """ Get state information to be able to revert temporary additions of supplementary clauses. _ClauseArray: state is the length of the int array, NOT number of clauses. """ return len(self._clause_array) def restore_state(self, saved_state): """ Restore state saved via `save_state`. Removes clauses that were added after the state has been saved. """ len_clause_array = saved_state self._clause_array[len_clause_array:] = array("i") def as_list(self): """Return clauses as a list of tuples of ints.""" clause = [] for v in self._clause_array: if v == 0: yield tuple(clause) clause.clear() else: clause.append(v) def as_array(self): """Return clauses as a flat int array, each clause being terminated by 0.""" return self._clause_array class _SatSolver: """Simple wrapper to call a SAT solver given a _ClauseList/_ClauseArray instance.""" def __init__(self, **run_kwargs): self._run_kwargs = run_kwargs or {} self._clauses = _ClauseList() # Bind some methods of _clauses to reduce lookups and call overhead. self.add_clause = self._clauses.append self.add_clauses = self._clauses.extend def get_clause_count(self): return self._clauses.get_clause_count() def as_list(self): return self._clauses.as_list() def save_state(self): return self._clauses.save_state() def restore_state(self, saved_state): return self._clauses.restore_state(saved_state) def run(self, m, **kwargs): run_kwargs = self._run_kwargs.copy() run_kwargs.update(kwargs) solver = self.setup(m, **run_kwargs) sat_solution = self.invoke(solver) solution = self.process_solution(sat_solution) return solution def setup(self, m, **kwargs): """Create a solver instance, add the clauses to it, and return it.""" raise NotImplementedError() def invoke(self, solver): """Start the actual SAT solving and return the calculated solution.""" raise NotImplementedError() def process_solution(self, sat_solution): """ Process the solution returned by self.invoke. Returns a list of satisfied variables or None if no solution is found. """ raise NotImplementedError() class _PycoSatSolver(_SatSolver): def setup(self, m, limit=0, **kwargs): from pycosat import itersolve # NOTE: The iterative solving isn't actually used here, we just call # itersolve to separate setup from the actual run. return itersolve(self._clauses.as_list(), vars=m, prop_limit=limit) # If we add support for passing the clauses as an integer stream to the # solvers, we could also use self._clauses.as_array like this: # return itersolve(self._clauses.as_array(), vars=m, prop_limit=limit) def invoke(self, iter_sol): try: sat_solution = next(iter_sol) except StopIteration: sat_solution = "UNSAT" del iter_sol return sat_solution def process_solution(self, sat_solution): if sat_solution in ("UNSAT", "UNKNOWN"): return None return sat_solution class _PyCryptoSatSolver(_SatSolver): def setup(self, m, threads=1, **kwargs): from pycryptosat import Solver solver = Solver(threads=threads) solver.add_clauses(self._clauses.as_list()) return solver def invoke(self, solver): sat, sat_solution = solver.solve() if not sat: sat_solution = None return sat_solution def process_solution(self, solution): if not solution: return None # The first element of the solution is always None. solution = [i for i, b in enumerate(solution) if b] return solution class _PySatSolver(_SatSolver): def setup(self, m, **kwargs): from pysat.solvers import Glucose4 solver = Glucose4() solver.append_formula(self._clauses.as_list()) return solver def invoke(self, solver): if not solver.solve(): sat_solution = None else: sat_solution = solver.get_model() solver.delete() return sat_solution def process_solution(self, sat_solution): if sat_solution is None: solution = None else: solution = sat_solution return solution _sat_solver_str_to_cls = { "pycosat": _PycoSatSolver, "pycryptosat": _PyCryptoSatSolver, "pysat": _PySatSolver, } _sat_solver_cls_to_str = {cls: string for string, cls in _sat_solver_str_to_cls.items()} # Code that uses special cases (generates no clauses) is in ADTs/FEnv.h in # minisatp. Code that generates clauses is in Hardware_clausify.cc (and are # also described in the paper, "Translating Pseudo-Boolean Constraints into # SAT," Eén and Sörensson). class Clauses: def __init__(self, m=0, sat_solver_str=_sat_solver_cls_to_str[_PycoSatSolver]): self.unsat = False self.m = m try: sat_solver_cls = _sat_solver_str_to_cls[sat_solver_str] except KeyError: raise NotImplementedError(f"Unknown SAT solver: {sat_solver_str}") self._sat_solver = sat_solver_cls() # Bind some methods of _sat_solver to reduce lookups and call overhead. self.add_clause = self._sat_solver.add_clause self.add_clauses = self._sat_solver.add_clauses def get_clause_count(self): return self._sat_solver.get_clause_count() def as_list(self): return self._sat_solver.as_list() def new_var(self): m = self.m + 1 self.m = m return m def assign(self, vals): if isinstance(vals, tuple): x = self.new_var() self.add_clauses((-x,) + y for y in vals[0]) self.add_clauses((x,) + y for y in vals[1]) return x return vals def Combine(self, args, polarity): if any(v == FALSE for v in args): return FALSE args = [v for v in args if v != TRUE] nv = len(args) if nv == 0: return TRUE if nv == 1: return args[0] if all(isinstance(v, tuple) for v in args): return (sum((v[0] for v in args), []), sum((v[1] for v in args), [])) else: return self.All(map(self.assign, args), polarity) def Eval(self, func, args, polarity): saved_state = self._sat_solver.save_state() vals = func(*args, polarity=polarity) # eval without assignment: if isinstance(vals, tuple): self.add_clauses(vals[0]) self.add_clauses(vals[1]) elif vals not in {TRUE, FALSE}: self.add_clause((vals if polarity else -vals,)) else: self._sat_solver.restore_state(saved_state) self.unsat = self.unsat or (vals == TRUE) != polarity def Prevent(self, func, *args): self.Eval(func, args, polarity=False) def Require(self, func, *args): self.Eval(func, args, polarity=True) def Not(self, x, polarity=None, add_new_clauses=False): return -x def And(self, f, g, polarity, add_new_clauses=False): if f == FALSE or g == FALSE: return FALSE if f == TRUE: return g if g == TRUE: return f if f == g: return f if f == -g: return FALSE if g < f: f, g = g, f if add_new_clauses: # This is equivalent to running self.assign(pval, nval) on # the (pval, nval) tuple we return below. Duplicating the code here # is an important performance tweak to avoid the costly generator # expressions and tuple additions in self.assign. x = self.new_var() if polarity in (True, None): self.add_clauses( [ ( -x, f, ), ( -x, g, ), ] ) if polarity in (False, None): self.add_clauses([(x, -f, -g)]) return x pval = [(f,), (g,)] if polarity in (True, None) else [] nval = [(-f, -g)] if polarity in (False, None) else [] return pval, nval def Or(self, f, g, polarity, add_new_clauses=False): if f == TRUE or g == TRUE: return TRUE if f == FALSE: return g if g == FALSE: return f if f == g: return f if f == -g: return TRUE if g < f: f, g = g, f if add_new_clauses: x = self.new_var() if polarity in (True, None): self.add_clauses([(-x, f, g)]) if polarity in (False, None): self.add_clauses( [ ( x, -f, ), ( x, -g, ), ] ) return x pval = [(f, g)] if polarity in (True, None) else [] nval = [(-f,), (-g,)] if polarity in (False, None) else [] return pval, nval def Xor(self, f, g, polarity, add_new_clauses=False): if f == FALSE: return g if f == TRUE: return self.Not(g, polarity, add_new_clauses=add_new_clauses) if g == FALSE: return f if g == TRUE: return -f if f == g: return FALSE if f == -g: return TRUE if g < f: f, g = g, f if add_new_clauses: x = self.new_var() if polarity in (True, None): self.add_clauses([(-x, f, g), (-x, -f, -g)]) if polarity in (False, None): self.add_clauses([(x, -f, g), (x, f, -g)]) return x pval = [(f, g), (-f, -g)] if polarity in (True, None) else [] nval = [(-f, g), (f, -g)] if polarity in (False, None) else [] return pval, nval def ITE(self, c, t, f, polarity, add_new_clauses=False): if c == TRUE: return t if c == FALSE: return f if t == TRUE: return self.Or(c, f, polarity, add_new_clauses=add_new_clauses) if t == FALSE: return self.And(-c, f, polarity, add_new_clauses=add_new_clauses) if f == FALSE: return self.And(c, t, polarity, add_new_clauses=add_new_clauses) if f == TRUE: return self.Or(t, -c, polarity, add_new_clauses=add_new_clauses) if t == c: return self.Or(c, f, polarity, add_new_clauses=add_new_clauses) if t == -c: return self.And(-c, f, polarity, add_new_clauses=add_new_clauses) if f == c: return self.And(c, t, polarity, add_new_clauses=add_new_clauses) if f == -c: return self.Or(t, -c, polarity, add_new_clauses=add_new_clauses) if t == f: return t if t == -f: return self.Xor(c, f, polarity, add_new_clauses=add_new_clauses) if t < f: t, f, c = f, t, -c # Basically, c ? t : f is equivalent to (c AND t) OR (NOT c AND f) # The third clause in each group is redundant but assists the unit # propagation in the SAT solver. if add_new_clauses: x = self.new_var() if polarity in (True, None): self.add_clauses([(-x, -c, t), (-x, c, f), (-x, t, f)]) if polarity in (False, None): self.add_clauses([(x, -c, -t), (x, c, -f), (x, -t, -f)]) return x pval = [(-c, t), (c, f), (t, f)] if polarity in (True, None) else [] nval = [(-c, -t), (c, -f), (-t, -f)] if polarity in (False, None) else [] return pval, nval def All(self, iter, polarity=None): vals = set() for v in iter: if v == TRUE: continue if v == FALSE or -v in vals: return FALSE vals.add(v) nv = len(vals) if nv == 0: return TRUE elif nv == 1: return next(v for v in vals) pval = [(v,) for v in vals] if polarity in (True, None) else [] nval = [tuple(-v for v in vals)] if polarity in (False, None) else [] return pval, nval def Any(self, iter, polarity): vals = set() for v in iter: if v == FALSE: continue elif v == TRUE or -v in vals: return TRUE vals.add(v) nv = len(vals) if nv == 0: return FALSE elif nv == 1: return next(v for v in vals) pval = [tuple(vals)] if polarity in (True, None) else [] nval = [(-v,) for v in vals] if polarity in (False, None) else [] return pval, nval def AtMostOne_NSQ(self, vals, polarity): combos = [] for v1, v2 in combinations(map(self.Not, vals), 2): combos.append(self.Or(v1, v2, polarity)) return self.Combine(combos, polarity) def AtMostOne_BDD(self, vals, polarity=None): lits = list(vals) coeffs = [1] * len(lits) return self.LinearBound(lits, coeffs, 0, 1, True, polarity) def ExactlyOne_NSQ(self, vals, polarity): vals = list(vals) v1 = self.AtMostOne_NSQ(vals, polarity) v2 = self.Any(vals, polarity) return self.Combine((v1, v2), polarity) def ExactlyOne_BDD(self, vals, polarity): lits = list(vals) coeffs = [1] * len(lits) return self.LinearBound(lits, coeffs, 1, 1, True, polarity) def LB_Preprocess(self, lits, coeffs): equation = [] offset = 0 for coeff, lit in zip(coeffs, lits): if lit == TRUE: offset += coeff continue if lit == FALSE or coeff == 0: continue if coeff < 0: offset += coeff coeff, lit = -coeff, -lit equation.append((coeff, lit)) coeffs, lits = tuple(zip(*sorted(equation))) or ((), ()) return lits, coeffs, offset def BDD(self, lits, coeffs, nterms, lo, hi, polarity): # The equation (coeffs x lits) is sorted in # order of increasing coefficients. # Then we take advantage of the following recurrence: # l <= S + cN xN <= u # => IF xN THEN l - cN <= S <= u - cN # ELSE l <= S <= u # we use memoization to prune common subexpressions total = sum(c for c in coeffs[:nterms]) target = (nterms - 1, 0, total) call_stack = [target] ret = {} call_stack_append = call_stack.append call_stack_pop = call_stack.pop ret_get = ret.get ITE = self.ITE csum = 0 while call_stack: ndx, csum, total = call_stack[-1] lower_limit = lo - csum upper_limit = hi - csum if lower_limit <= 0 and upper_limit >= total: ret[call_stack_pop()] = TRUE continue if lower_limit > total or upper_limit < 0: ret[call_stack_pop()] = FALSE continue LA = lits[ndx] LC = coeffs[ndx] ndx -= 1 total -= LC hi_key = (ndx, csum if LA < 0 else csum + LC, total) thi = ret_get(hi_key) if thi is None: call_stack_append(hi_key) continue lo_key = (ndx, csum + LC if LA < 0 else csum, total) tlo = ret_get(lo_key) if tlo is None: call_stack_append(lo_key) continue # NOTE: The following ITE call is _the_ hotspot of the Python-side # computations for the overall minimization run. For performance we # avoid calling self.assign here via add_new_clauses=True. # If we want to translate parts of the code to a compiled language, # self.BDD (+ its downward call stack) is the prime candidate! ret[call_stack_pop()] = ITE( abs(LA), thi, tlo, polarity, add_new_clauses=True ) return ret[target] def LinearBound(self, lits, coeffs, lo, hi, preprocess, polarity): if preprocess: lits, coeffs, offset = self.LB_Preprocess(lits, coeffs) lo -= offset hi -= offset nterms = len(coeffs) if nterms and coeffs[-1] > hi: nprune = sum(c > hi for c in coeffs) log.log( TRACE, "Eliminating %d/%d terms for bound violation", nprune, nterms ) nterms -= nprune else: nprune = 0 # Tighten bounds total = sum(c for c in coeffs[:nterms]) if preprocess: lo = max([lo, 0]) hi = min([hi, total]) if lo > hi: return FALSE if nterms == 0: res = TRUE if lo == 0 else FALSE else: res = self.BDD(lits, coeffs, nterms, lo, hi, polarity) if nprune: prune = self.All([-a for a in lits[nterms:]], polarity) res = self.Combine((res, prune), polarity) return res def _run_sat(self, m, limit=0): if log.isEnabledFor(DEBUG): log.debug("Invoking SAT with clause count: %s", self.get_clause_count()) solution = self._sat_solver.run(m, limit=limit) return solution def sat(self, additional=None, includeIf=False, limit=0): """ Calculate a SAT solution for the current clause set. Returned is the list of those solutions. When the clauses are unsatisfiable, an empty list is returned. """ if self.unsat: return None if not self.m: return [] saved_state = self._sat_solver.save_state() if additional: def preproc(eqs): def preproc_(cc): for c in cc: if c == FALSE: continue yield c if c == TRUE: break for cc in eqs: cc = tuple(preproc_(cc)) if not cc: yield cc break if cc[-1] != TRUE: yield cc additional = list(preproc(additional)) if additional: if not additional[-1]: return None self.add_clauses(additional) solution = self._run_sat(self.m, limit=limit) if additional and (solution is None or not includeIf): self._sat_solver.restore_state(saved_state) return solution def minimize(self, lits, coeffs, bestsol=None, trymax=False): """ Minimize the objective function given by (coeff, integer) pairs in zip(coeffs, lits). The actual minimization is multiobjective: first, we minimize the largest active coefficient value, then we minimize the sum. """ if bestsol is None or len(bestsol) < self.m: log.debug("Clauses added, recomputing solution") bestsol = self.sat() if bestsol is None or self.unsat: log.debug("Constraints are unsatisfiable") return bestsol, sum(abs(c) for c in coeffs) + 1 if coeffs else 1 if not coeffs: log.debug("Empty objective, trivial solution") return bestsol, 0 lits, coeffs, offset = self.LB_Preprocess(lits, coeffs) maxval = max(coeffs) def peak_val(sol, objective_dict): return max(objective_dict.get(s, 0) for s in sol) def sum_val(sol, objective_dict): return sum(objective_dict.get(s, 0) for s in sol) lo = 0 try0 = 0 for peak in (True, False) if maxval > 1 else (False,): if peak: log.log(TRACE, "Beginning peak minimization") objval = peak_val else: log.log(TRACE, "Beginning sum minimization") objval = sum_val objective_dict = {a: c for c, a in zip(coeffs, lits)} bestval = objval(bestsol, objective_dict) # If we got lucky and the initial solution is optimal, we still # need to generate the constraints at least once hi = bestval m_orig = self.m if log.isEnabledFor(DEBUG): # This is only used for the log message below. nz = self.get_clause_count() saved_state = self._sat_solver.save_state() if trymax and not peak: try0 = hi - 1 log.log(TRACE, "Initial range (%d,%d)", lo, hi) while True: if try0 is None: mid = (lo + hi) // 2 else: mid = try0 if peak: prevent = tuple(a for c, a in zip(coeffs, lits) if c > mid) require = tuple(a for c, a in zip(coeffs, lits) if lo <= c <= mid) self.Prevent(self.Any, prevent) if require: self.Require(self.Any, require) else: self.Require(self.LinearBound, lits, coeffs, lo, mid, False) if log.isEnabledFor(DEBUG): log.log( TRACE, "Bisection attempt: (%d,%d), (%d+%d) clauses", lo, mid, nz, self.get_clause_count() - nz, ) newsol = self.sat() if newsol is None: lo = mid + 1 log.log(TRACE, "Bisection failure, new range=(%d,%d)", lo, hi) if lo > hi: # FIXME: This is not supposed to happen! # TODO: Investigate and fix the cause. break # If this was a failure of the first test after peak minimization, # then it means that the peak minimizer is "tight" and we don't need # any further constraints. else: done = lo == mid bestsol = newsol bestval = objval(newsol, objective_dict) hi = bestval log.log(TRACE, "Bisection success, new range=(%d,%d)", lo, hi) if done: break self.m = m_orig # Since we only ever _add_ clauses and only remove then via # restore_state, it's fine to test on equality only. if self._sat_solver.save_state() != saved_state: self._sat_solver.restore_state(saved_state) self.unsat = False try0 = None log.debug("Final %s objective: %d" % ("peak" if peak else "sum", bestval)) if bestval == 0: break elif peak: # Now that we've minimized the peak value, we can drop any terms # with coefficients larger than this. Furthermore, since we know # at least one peak will be active, our lower bound for the sum # equals the peak. lits = [a for c, a in zip(coeffs, lits) if c <= bestval] coeffs = [c for c in coeffs if c <= bestval] try0 = sum_val(bestsol, objective_dict) lo = bestval else: log.debug("New peak objective: %d" % peak_val(bestsol, objective_dict)) return bestsol, bestval