""" This module provides functions to perform full Procrustes analysis. This code was originally written by Justin Kucynski and ported over from scikit-bio by Yoshiki Vazquez-Baeza. """ import numpy as np from scipy.linalg import orthogonal_procrustes __all__ = ['procrustes'] def procrustes(data1, data2): r"""Procrustes analysis, a similarity test for two data sets. Each input matrix is a set of points or vectors (the rows of the matrix). The dimension of the space is the number of columns of each matrix. Given two identically sized matrices, procrustes standardizes both such that: - :math:`tr(AA^{T}) = 1`. - Both sets of points are centered around the origin. Procrustes ([1]_, [2]_) then applies the optimal transform to the second matrix (including scaling/dilation, rotations, and reflections) to minimize :math:`M^{2}=\sum(data1-data2)^{2}`, or the sum of the squares of the pointwise differences between the two input datasets. This function was not designed to handle datasets with different numbers of datapoints (rows). If two data sets have different dimensionality (different number of columns), simply add columns of zeros to the smaller of the two. Parameters ---------- data1 : array_like Matrix, n rows represent points in k (columns) space `data1` is the reference data, after it is standardised, the data from `data2` will be transformed to fit the pattern in `data1` (must have >1 unique points). data2 : array_like n rows of data in k space to be fit to `data1`. Must be the same shape ``(numrows, numcols)`` as data1 (must have >1 unique points). Returns ------- mtx1 : array_like A standardized version of `data1`. mtx2 : array_like The orientation of `data2` that best fits `data1`. Centered, but not necessarily :math:`tr(AA^{T}) = 1`. disparity : float :math:`M^{2}` as defined above. Raises ------ ValueError If the input arrays are not two-dimensional. If the shape of the input arrays is different. If the input arrays have zero columns or zero rows. See Also -------- scipy.linalg.orthogonal_procrustes scipy.spatial.distance.directed_hausdorff : Another similarity test for two data sets Notes ----- - The disparity should not depend on the order of the input matrices, but the output matrices will, as only the first output matrix is guaranteed to be scaled such that :math:`tr(AA^{T}) = 1`. - Duplicate data points are generally ok, duplicating a data point will increase its effect on the procrustes fit. - The disparity scales as the number of points per input matrix. References ---------- .. [1] Krzanowski, W. J. (2000). "Principles of Multivariate analysis". .. [2] Gower, J. C. (1975). "Generalized procrustes analysis". Examples -------- >>> import numpy as np >>> from scipy.spatial import procrustes The matrix ``b`` is a rotated, shifted, scaled and mirrored version of ``a`` here: >>> a = np.array([[1, 3], [1, 2], [1, 1], [2, 1]], 'd') >>> b = np.array([[4, -2], [4, -4], [4, -6], [2, -6]], 'd') >>> mtx1, mtx2, disparity = procrustes(a, b) >>> round(disparity) 0.0 """ mtx1 = np.array(data1, dtype=np.float64, copy=True) mtx2 = np.array(data2, dtype=np.float64, copy=True) if mtx1.ndim != 2 or mtx2.ndim != 2: raise ValueError("Input matrices must be two-dimensional") if mtx1.shape != mtx2.shape: raise ValueError("Input matrices must be of same shape") if mtx1.size == 0: raise ValueError("Input matrices must be >0 rows and >0 cols") # translate all the data to the origin mtx1 -= np.mean(mtx1, 0) mtx2 -= np.mean(mtx2, 0) norm1 = np.linalg.norm(mtx1) norm2 = np.linalg.norm(mtx2) if norm1 == 0 or norm2 == 0: raise ValueError("Input matrices must contain >1 unique points") # change scaling of data (in rows) such that trace(mtx*mtx') = 1 mtx1 /= norm1 mtx2 /= norm2 # transform mtx2 to minimize disparity R, s = orthogonal_procrustes(mtx1, mtx2) mtx2 = np.dot(mtx2, R.T) * s # measure the dissimilarity between the two datasets disparity = np.sum(np.square(mtx1 - mtx2)) return mtx1, mtx2, disparity