import numpy as np from numpy.testing import assert_equal, assert_array_equal, assert_allclose import pytest from pytest import raises as assert_raises from scipy.interpolate import (griddata, NearestNDInterpolator, LinearNDInterpolator, CloughTocher2DInterpolator) parametrize_interpolators = pytest.mark.parametrize( "interpolator", [NearestNDInterpolator, LinearNDInterpolator, CloughTocher2DInterpolator] ) class TestGriddata: def test_fill_value(self): x = [(0,0), (0,1), (1,0)] y = [1, 2, 3] yi = griddata(x, y, [(1,1), (1,2), (0,0)], fill_value=-1) assert_array_equal(yi, [-1., -1, 1]) yi = griddata(x, y, [(1,1), (1,2), (0,0)]) assert_array_equal(yi, [np.nan, np.nan, 1]) def test_alternative_call(self): x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)], dtype=np.float64) y = (np.arange(x.shape[0], dtype=np.float64)[:,None] + np.array([0,1])[None,:]) for method in ('nearest', 'linear', 'cubic'): for rescale in (True, False): msg = repr((method, rescale)) yi = griddata((x[:,0], x[:,1]), y, (x[:,0], x[:,1]), method=method, rescale=rescale) assert_allclose(y, yi, atol=1e-14, err_msg=msg) def test_multivalue_2d(self): x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)], dtype=np.float64) y = (np.arange(x.shape[0], dtype=np.float64)[:,None] + np.array([0,1])[None,:]) for method in ('nearest', 'linear', 'cubic'): for rescale in (True, False): msg = repr((method, rescale)) yi = griddata(x, y, x, method=method, rescale=rescale) assert_allclose(y, yi, atol=1e-14, err_msg=msg) def test_multipoint_2d(self): x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)], dtype=np.float64) y = np.arange(x.shape[0], dtype=np.float64) xi = x[:,None,:] + np.array([0,0,0])[None,:,None] for method in ('nearest', 'linear', 'cubic'): for rescale in (True, False): msg = repr((method, rescale)) yi = griddata(x, y, xi, method=method, rescale=rescale) assert_equal(yi.shape, (5, 3), err_msg=msg) assert_allclose(yi, np.tile(y[:,None], (1, 3)), atol=1e-14, err_msg=msg) def test_complex_2d(self): x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)], dtype=np.float64) y = np.arange(x.shape[0], dtype=np.float64) y = y - 2j*y[::-1] xi = x[:,None,:] + np.array([0,0,0])[None,:,None] for method in ('nearest', 'linear', 'cubic'): for rescale in (True, False): msg = repr((method, rescale)) yi = griddata(x, y, xi, method=method, rescale=rescale) assert_equal(yi.shape, (5, 3), err_msg=msg) assert_allclose(yi, np.tile(y[:,None], (1, 3)), atol=1e-14, err_msg=msg) def test_1d(self): x = np.array([1, 2.5, 3, 4.5, 5, 6]) y = np.array([1, 2, 0, 3.9, 2, 1]) for method in ('nearest', 'linear', 'cubic'): assert_allclose(griddata(x, y, x, method=method), y, err_msg=method, atol=1e-14) assert_allclose(griddata(x.reshape(6, 1), y, x, method=method), y, err_msg=method, atol=1e-14) assert_allclose(griddata((x,), y, (x,), method=method), y, err_msg=method, atol=1e-14) def test_1d_borders(self): # Test for nearest neighbor case with xi outside # the range of the values. x = np.array([1, 2.5, 3, 4.5, 5, 6]) y = np.array([1, 2, 0, 3.9, 2, 1]) xi = np.array([0.9, 6.5]) yi_should = np.array([1.0, 1.0]) method = 'nearest' assert_allclose(griddata(x, y, xi, method=method), yi_should, err_msg=method, atol=1e-14) assert_allclose(griddata(x.reshape(6, 1), y, xi, method=method), yi_should, err_msg=method, atol=1e-14) assert_allclose(griddata((x, ), y, (xi, ), method=method), yi_should, err_msg=method, atol=1e-14) def test_1d_unsorted(self): x = np.array([2.5, 1, 4.5, 5, 6, 3]) y = np.array([1, 2, 0, 3.9, 2, 1]) for method in ('nearest', 'linear', 'cubic'): assert_allclose(griddata(x, y, x, method=method), y, err_msg=method, atol=1e-10) assert_allclose(griddata(x.reshape(6, 1), y, x, method=method), y, err_msg=method, atol=1e-10) assert_allclose(griddata((x,), y, (x,), method=method), y, err_msg=method, atol=1e-10) def test_square_rescale_manual(self): points = np.array([(0,0), (0,100), (10,100), (10,0), (1, 5)], dtype=np.float64) points_rescaled = np.array([(0,0), (0,1), (1,1), (1,0), (0.1, 0.05)], dtype=np.float64) values = np.array([1., 2., -3., 5., 9.], dtype=np.float64) xx, yy = np.broadcast_arrays(np.linspace(0, 10, 14)[:,None], np.linspace(0, 100, 14)[None,:]) xx = xx.ravel() yy = yy.ravel() xi = np.array([xx, yy]).T.copy() for method in ('nearest', 'linear', 'cubic'): msg = method zi = griddata(points_rescaled, values, xi/np.array([10, 100.]), method=method) zi_rescaled = griddata(points, values, xi, method=method, rescale=True) assert_allclose(zi, zi_rescaled, err_msg=msg, atol=1e-12) def test_xi_1d(self): # Check that 1-D xi is interpreted as a coordinate x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)], dtype=np.float64) y = np.arange(x.shape[0], dtype=np.float64) y = y - 2j*y[::-1] xi = np.array([0.5, 0.5]) for method in ('nearest', 'linear', 'cubic'): p1 = griddata(x, y, xi, method=method) p2 = griddata(x, y, xi[None,:], method=method) assert_allclose(p1, p2, err_msg=method) xi1 = np.array([0.5]) xi3 = np.array([0.5, 0.5, 0.5]) assert_raises(ValueError, griddata, x, y, xi1, method=method) assert_raises(ValueError, griddata, x, y, xi3, method=method) class TestNearestNDInterpolator: def test_nearest_options(self): # smoke test that NearestNDInterpolator accept cKDTree options npts, nd = 4, 3 x = np.arange(npts*nd).reshape((npts, nd)) y = np.arange(npts) nndi = NearestNDInterpolator(x, y) opts = {'balanced_tree': False, 'compact_nodes': False} nndi_o = NearestNDInterpolator(x, y, tree_options=opts) assert_allclose(nndi(x), nndi_o(x), atol=1e-14) def test_nearest_list_argument(self): nd = np.array([[0, 0, 0, 0, 1, 0, 1], [0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1, 2]]) d = nd[:, 3:] # z is np.array NI = NearestNDInterpolator((d[0], d[1]), d[2]) assert_array_equal(NI([0.1, 0.9], [0.1, 0.9]), [0, 2]) # z is list NI = NearestNDInterpolator((d[0], d[1]), list(d[2])) assert_array_equal(NI([0.1, 0.9], [0.1, 0.9]), [0, 2]) def test_nearest_query_options(self): nd = np.array([[0, 0.5, 0, 1], [0, 0, 0.5, 1], [0, 1, 1, 2]]) delta = 0.1 query_points = [0 + delta, 1 + delta], [0 + delta, 1 + delta] # case 1 - query max_dist is smaller than # the query points' nearest distance to nd. NI = NearestNDInterpolator((nd[0], nd[1]), nd[2]) distance_upper_bound = np.sqrt(delta ** 2 + delta ** 2) - 1e-7 assert_array_equal(NI(query_points, distance_upper_bound=distance_upper_bound), [np.nan, np.nan]) # case 2 - query p is inf, will return [0, 2] distance_upper_bound = np.sqrt(delta ** 2 + delta ** 2) - 1e-7 p = np.inf assert_array_equal( NI(query_points, distance_upper_bound=distance_upper_bound, p=p), [0, 2] ) # case 3 - query max_dist is larger, so should return non np.nan distance_upper_bound = np.sqrt(delta ** 2 + delta ** 2) + 1e-7 assert_array_equal( NI(query_points, distance_upper_bound=distance_upper_bound), [0, 2] ) def test_nearest_query_valid_inputs(self): nd = np.array([[0, 1, 0, 1], [0, 0, 1, 1], [0, 1, 1, 2]]) NI = NearestNDInterpolator((nd[0], nd[1]), nd[2]) with assert_raises(TypeError): NI([0.5, 0.5], query_options="not a dictionary") class TestNDInterpolators: @parametrize_interpolators def test_broadcastable_input(self, interpolator): # input data np.random.seed(0) x = np.random.random(10) y = np.random.random(10) z = np.hypot(x, y) # x-y grid for interpolation X = np.linspace(min(x), max(x)) Y = np.linspace(min(y), max(y)) X, Y = np.meshgrid(X, Y) XY = np.vstack((X.ravel(), Y.ravel())).T interp = interpolator(list(zip(x, y)), z) # single array input interp_points0 = interp(XY) # tuple input interp_points1 = interp((X, Y)) interp_points2 = interp((X, 0.0)) # broadcastable input interp_points3 = interp(X, Y) interp_points4 = interp(X, 0.0) assert_equal(interp_points0.size == interp_points1.size == interp_points2.size == interp_points3.size == interp_points4.size, True) @parametrize_interpolators def test_read_only(self, interpolator): # input data np.random.seed(0) xy = np.random.random((10, 2)) x, y = xy[:, 0], xy[:, 1] z = np.hypot(x, y) # interpolation points XY = np.random.random((50, 2)) xy.setflags(write=False) z.setflags(write=False) XY.setflags(write=False) interp = interpolator(xy, z) interp(XY)