import pytest from numpy.testing import assert_array_almost_equal, assert_array_equal from pytest import raises as assert_raises import numpy as np from numpy import array, transpose, dot, conjugate, zeros_like, empty from numpy.random import random from scipy.linalg import cholesky, cholesky_banded, cho_solve_banded, \ cho_factor, cho_solve from scipy.linalg._testutils import assert_no_overwrite class TestCholesky: def test_simple(self): a = [[8, 2, 3], [2, 9, 3], [3, 3, 6]] c = cholesky(a) assert_array_almost_equal(dot(transpose(c), c), a) c = transpose(c) a = dot(c, transpose(c)) assert_array_almost_equal(cholesky(a, lower=1), c) def test_check_finite(self): a = [[8, 2, 3], [2, 9, 3], [3, 3, 6]] c = cholesky(a, check_finite=False) assert_array_almost_equal(dot(transpose(c), c), a) c = transpose(c) a = dot(c, transpose(c)) assert_array_almost_equal(cholesky(a, lower=1, check_finite=False), c) def test_simple_complex(self): m = array([[3+1j, 3+4j, 5], [0, 2+2j, 2+7j], [0, 0, 7+4j]]) a = dot(transpose(conjugate(m)), m) c = cholesky(a) a1 = dot(transpose(conjugate(c)), c) assert_array_almost_equal(a, a1) c = transpose(c) a = dot(c, transpose(conjugate(c))) assert_array_almost_equal(cholesky(a, lower=1), c) def test_random(self): n = 20 for k in range(2): m = random([n, n]) for i in range(n): m[i, i] = 20*(.1+m[i, i]) a = dot(transpose(m), m) c = cholesky(a) a1 = dot(transpose(c), c) assert_array_almost_equal(a, a1) c = transpose(c) a = dot(c, transpose(c)) assert_array_almost_equal(cholesky(a, lower=1), c) def test_random_complex(self): n = 20 for k in range(2): m = random([n, n])+1j*random([n, n]) for i in range(n): m[i, i] = 20*(.1+abs(m[i, i])) a = dot(transpose(conjugate(m)), m) c = cholesky(a) a1 = dot(transpose(conjugate(c)), c) assert_array_almost_equal(a, a1) c = transpose(c) a = dot(c, transpose(conjugate(c))) assert_array_almost_equal(cholesky(a, lower=1), c) @pytest.mark.xslow def test_int_overflow(self): # regression test for # https://github.com/scipy/scipy/issues/17436 # the problem was an int overflow in zeroing out # the unused triangular part n = 47_000 x = np.eye(n, dtype=np.float64, order='F') x[:4, :4] = np.array([[4, -2, 3, -1], [-2, 4, -3, 1], [3, -3, 5, 0], [-1, 1, 0, 5]]) cholesky(x, check_finite=False, overwrite_a=True) # should not segfault class TestCholeskyBanded: """Tests for cholesky_banded() and cho_solve_banded.""" def test_check_finite(self): # Symmetric positive definite banded matrix `a` a = array([[4.0, 1.0, 0.0, 0.0], [1.0, 4.0, 0.5, 0.0], [0.0, 0.5, 4.0, 0.2], [0.0, 0.0, 0.2, 4.0]]) # Banded storage form of `a`. ab = array([[-1.0, 1.0, 0.5, 0.2], [4.0, 4.0, 4.0, 4.0]]) c = cholesky_banded(ab, lower=False, check_finite=False) ufac = zeros_like(a) ufac[list(range(4)), list(range(4))] = c[-1] ufac[(0, 1, 2), (1, 2, 3)] = c[0, 1:] assert_array_almost_equal(a, dot(ufac.T, ufac)) b = array([0.0, 0.5, 4.2, 4.2]) x = cho_solve_banded((c, False), b, check_finite=False) assert_array_almost_equal(x, [0.0, 0.0, 1.0, 1.0]) def test_upper_real(self): # Symmetric positive definite banded matrix `a` a = array([[4.0, 1.0, 0.0, 0.0], [1.0, 4.0, 0.5, 0.0], [0.0, 0.5, 4.0, 0.2], [0.0, 0.0, 0.2, 4.0]]) # Banded storage form of `a`. ab = array([[-1.0, 1.0, 0.5, 0.2], [4.0, 4.0, 4.0, 4.0]]) c = cholesky_banded(ab, lower=False) ufac = zeros_like(a) ufac[list(range(4)), list(range(4))] = c[-1] ufac[(0, 1, 2), (1, 2, 3)] = c[0, 1:] assert_array_almost_equal(a, dot(ufac.T, ufac)) b = array([0.0, 0.5, 4.2, 4.2]) x = cho_solve_banded((c, False), b) assert_array_almost_equal(x, [0.0, 0.0, 1.0, 1.0]) def test_upper_complex(self): # Hermitian positive definite banded matrix `a` a = array([[4.0, 1.0, 0.0, 0.0], [1.0, 4.0, 0.5, 0.0], [0.0, 0.5, 4.0, -0.2j], [0.0, 0.0, 0.2j, 4.0]]) # Banded storage form of `a`. ab = array([[-1.0, 1.0, 0.5, -0.2j], [4.0, 4.0, 4.0, 4.0]]) c = cholesky_banded(ab, lower=False) ufac = zeros_like(a) ufac[list(range(4)), list(range(4))] = c[-1] ufac[(0, 1, 2), (1, 2, 3)] = c[0, 1:] assert_array_almost_equal(a, dot(ufac.conj().T, ufac)) b = array([0.0, 0.5, 4.0-0.2j, 0.2j + 4.0]) x = cho_solve_banded((c, False), b) assert_array_almost_equal(x, [0.0, 0.0, 1.0, 1.0]) def test_lower_real(self): # Symmetric positive definite banded matrix `a` a = array([[4.0, 1.0, 0.0, 0.0], [1.0, 4.0, 0.5, 0.0], [0.0, 0.5, 4.0, 0.2], [0.0, 0.0, 0.2, 4.0]]) # Banded storage form of `a`. ab = array([[4.0, 4.0, 4.0, 4.0], [1.0, 0.5, 0.2, -1.0]]) c = cholesky_banded(ab, lower=True) lfac = zeros_like(a) lfac[list(range(4)), list(range(4))] = c[0] lfac[(1, 2, 3), (0, 1, 2)] = c[1, :3] assert_array_almost_equal(a, dot(lfac, lfac.T)) b = array([0.0, 0.5, 4.2, 4.2]) x = cho_solve_banded((c, True), b) assert_array_almost_equal(x, [0.0, 0.0, 1.0, 1.0]) def test_lower_complex(self): # Hermitian positive definite banded matrix `a` a = array([[4.0, 1.0, 0.0, 0.0], [1.0, 4.0, 0.5, 0.0], [0.0, 0.5, 4.0, -0.2j], [0.0, 0.0, 0.2j, 4.0]]) # Banded storage form of `a`. ab = array([[4.0, 4.0, 4.0, 4.0], [1.0, 0.5, 0.2j, -1.0]]) c = cholesky_banded(ab, lower=True) lfac = zeros_like(a) lfac[list(range(4)), list(range(4))] = c[0] lfac[(1, 2, 3), (0, 1, 2)] = c[1, :3] assert_array_almost_equal(a, dot(lfac, lfac.conj().T)) b = array([0.0, 0.5j, 3.8j, 3.8]) x = cho_solve_banded((c, True), b) assert_array_almost_equal(x, [0.0, 0.0, 1.0j, 1.0]) class TestOverwrite: def test_cholesky(self): assert_no_overwrite(cholesky, [(3, 3)]) def test_cho_factor(self): assert_no_overwrite(cho_factor, [(3, 3)]) def test_cho_solve(self): x = array([[2, -1, 0], [-1, 2, -1], [0, -1, 2]]) xcho = cho_factor(x) assert_no_overwrite(lambda b: cho_solve(xcho, b), [(3,)]) def test_cholesky_banded(self): assert_no_overwrite(cholesky_banded, [(2, 3)]) def test_cho_solve_banded(self): x = array([[0, -1, -1], [2, 2, 2]]) xcho = cholesky_banded(x) assert_no_overwrite(lambda b: cho_solve_banded((xcho, False), b), [(3,)]) class TestEmptyArray: def test_cho_factor_empty_square(self): a = empty((0, 0)) b = array([]) c = array([[]]) d = [] e = [[]] x, _ = cho_factor(a) assert_array_equal(x, a) for x in ([b, c, d, e]): assert_raises(ValueError, cho_factor, x)