""" This module implements the Sequential Least Squares Programming optimization algorithm (SLSQP), originally developed by Dieter Kraft. See http://www.netlib.org/toms/733 Functions --------- .. autosummary:: :toctree: generated/ approx_jacobian fmin_slsqp """ __all__ = ['approx_jacobian', 'fmin_slsqp'] import numpy as np from scipy.optimize._slsqp import slsqp from numpy import (zeros, array, linalg, append, concatenate, finfo, sqrt, vstack, isfinite, atleast_1d) from ._optimize import (OptimizeResult, _check_unknown_options, _prepare_scalar_function, _clip_x_for_func, _check_clip_x) from ._numdiff import approx_derivative from ._constraints import old_bound_to_new, _arr_to_scalar from scipy._lib._array_api import atleast_nd, array_namespace # deprecated imports to be removed in SciPy 1.13.0 from numpy import exp, inf # noqa: F401 __docformat__ = "restructuredtext en" _epsilon = sqrt(finfo(float).eps) def approx_jacobian(x, func, epsilon, *args): """ Approximate the Jacobian matrix of a callable function. Parameters ---------- x : array_like The state vector at which to compute the Jacobian matrix. func : callable f(x,*args) The vector-valued function. epsilon : float The perturbation used to determine the partial derivatives. args : sequence Additional arguments passed to func. Returns ------- An array of dimensions ``(lenf, lenx)`` where ``lenf`` is the length of the outputs of `func`, and ``lenx`` is the number of elements in `x`. Notes ----- The approximation is done using forward differences. """ # approx_derivative returns (m, n) == (lenf, lenx) jac = approx_derivative(func, x, method='2-point', abs_step=epsilon, args=args) # if func returns a scalar jac.shape will be (lenx,). Make sure # it's at least a 2D array. return np.atleast_2d(jac) def fmin_slsqp(func, x0, eqcons=(), f_eqcons=None, ieqcons=(), f_ieqcons=None, bounds=(), fprime=None, fprime_eqcons=None, fprime_ieqcons=None, args=(), iter=100, acc=1.0E-6, iprint=1, disp=None, full_output=0, epsilon=_epsilon, callback=None): """ Minimize a function using Sequential Least Squares Programming Python interface function for the SLSQP Optimization subroutine originally implemented by Dieter Kraft. Parameters ---------- func : callable f(x,*args) Objective function. Must return a scalar. x0 : 1-D ndarray of float Initial guess for the independent variable(s). eqcons : list, optional A list of functions of length n such that eqcons[j](x,*args) == 0.0 in a successfully optimized problem. f_eqcons : callable f(x,*args), optional Returns a 1-D array in which each element must equal 0.0 in a successfully optimized problem. If f_eqcons is specified, eqcons is ignored. ieqcons : list, optional A list of functions of length n such that ieqcons[j](x,*args) >= 0.0 in a successfully optimized problem. f_ieqcons : callable f(x,*args), optional Returns a 1-D ndarray in which each element must be greater or equal to 0.0 in a successfully optimized problem. If f_ieqcons is specified, ieqcons is ignored. bounds : list, optional A list of tuples specifying the lower and upper bound for each independent variable [(xl0, xu0),(xl1, xu1),...] Infinite values will be interpreted as large floating values. fprime : callable `f(x,*args)`, optional A function that evaluates the partial derivatives of func. fprime_eqcons : callable `f(x,*args)`, optional A function of the form `f(x, *args)` that returns the m by n array of equality constraint normals. If not provided, the normals will be approximated. The array returned by fprime_eqcons should be sized as ( len(eqcons), len(x0) ). fprime_ieqcons : callable `f(x,*args)`, optional A function of the form `f(x, *args)` that returns the m by n array of inequality constraint normals. If not provided, the normals will be approximated. The array returned by fprime_ieqcons should be sized as ( len(ieqcons), len(x0) ). args : sequence, optional Additional arguments passed to func and fprime. iter : int, optional The maximum number of iterations. acc : float, optional Requested accuracy. iprint : int, optional The verbosity of fmin_slsqp : * iprint <= 0 : Silent operation * iprint == 1 : Print summary upon completion (default) * iprint >= 2 : Print status of each iterate and summary disp : int, optional Overrides the iprint interface (preferred). full_output : bool, optional If False, return only the minimizer of func (default). Otherwise, output final objective function and summary information. epsilon : float, optional The step size for finite-difference derivative estimates. callback : callable, optional Called after each iteration, as ``callback(x)``, where ``x`` is the current parameter vector. Returns ------- out : ndarray of float The final minimizer of func. fx : ndarray of float, if full_output is true The final value of the objective function. its : int, if full_output is true The number of iterations. imode : int, if full_output is true The exit mode from the optimizer (see below). smode : string, if full_output is true Message describing the exit mode from the optimizer. See also -------- minimize: Interface to minimization algorithms for multivariate functions. See the 'SLSQP' `method` in particular. Notes ----- Exit modes are defined as follows :: -1 : Gradient evaluation required (g & a) 0 : Optimization terminated successfully 1 : Function evaluation required (f & c) 2 : More equality constraints than independent variables 3 : More than 3*n iterations in LSQ subproblem 4 : Inequality constraints incompatible 5 : Singular matrix E in LSQ subproblem 6 : Singular matrix C in LSQ subproblem 7 : Rank-deficient equality constraint subproblem HFTI 8 : Positive directional derivative for linesearch 9 : Iteration limit reached Examples -------- Examples are given :ref:`in the tutorial `. """ if disp is not None: iprint = disp opts = {'maxiter': iter, 'ftol': acc, 'iprint': iprint, 'disp': iprint != 0, 'eps': epsilon, 'callback': callback} # Build the constraints as a tuple of dictionaries cons = () # 1. constraints of the 1st kind (eqcons, ieqcons); no Jacobian; take # the same extra arguments as the objective function. cons += tuple({'type': 'eq', 'fun': c, 'args': args} for c in eqcons) cons += tuple({'type': 'ineq', 'fun': c, 'args': args} for c in ieqcons) # 2. constraints of the 2nd kind (f_eqcons, f_ieqcons) and their Jacobian # (fprime_eqcons, fprime_ieqcons); also take the same extra arguments # as the objective function. if f_eqcons: cons += ({'type': 'eq', 'fun': f_eqcons, 'jac': fprime_eqcons, 'args': args}, ) if f_ieqcons: cons += ({'type': 'ineq', 'fun': f_ieqcons, 'jac': fprime_ieqcons, 'args': args}, ) res = _minimize_slsqp(func, x0, args, jac=fprime, bounds=bounds, constraints=cons, **opts) if full_output: return res['x'], res['fun'], res['nit'], res['status'], res['message'] else: return res['x'] def _minimize_slsqp(func, x0, args=(), jac=None, bounds=None, constraints=(), maxiter=100, ftol=1.0E-6, iprint=1, disp=False, eps=_epsilon, callback=None, finite_diff_rel_step=None, **unknown_options): """ Minimize a scalar function of one or more variables using Sequential Least Squares Programming (SLSQP). Options ------- ftol : float Precision goal for the value of f in the stopping criterion. eps : float Step size used for numerical approximation of the Jacobian. disp : bool Set to True to print convergence messages. If False, `verbosity` is ignored and set to 0. maxiter : int Maximum number of iterations. finite_diff_rel_step : None or array_like, optional If `jac in ['2-point', '3-point', 'cs']` the relative step size to use for numerical approximation of `jac`. The absolute step size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``, possibly adjusted to fit into the bounds. For ``method='3-point'`` the sign of `h` is ignored. If None (default) then step is selected automatically. """ _check_unknown_options(unknown_options) iter = maxiter - 1 acc = ftol epsilon = eps if not disp: iprint = 0 # Transform x0 into an array. xp = array_namespace(x0) x0 = atleast_nd(x0, ndim=1, xp=xp) dtype = xp.float64 if xp.isdtype(x0.dtype, "real floating"): dtype = x0.dtype x = xp.reshape(xp.astype(x0, dtype), -1) # SLSQP is sent 'old-style' bounds, 'new-style' bounds are required by # ScalarFunction if bounds is None or len(bounds) == 0: new_bounds = (-np.inf, np.inf) else: new_bounds = old_bound_to_new(bounds) # clip the initial guess to bounds, otherwise ScalarFunction doesn't work x = np.clip(x, new_bounds[0], new_bounds[1]) # Constraints are triaged per type into a dictionary of tuples if isinstance(constraints, dict): constraints = (constraints, ) cons = {'eq': (), 'ineq': ()} for ic, con in enumerate(constraints): # check type try: ctype = con['type'].lower() except KeyError as e: raise KeyError('Constraint %d has no type defined.' % ic) from e except TypeError as e: raise TypeError('Constraints must be defined using a ' 'dictionary.') from e except AttributeError as e: raise TypeError("Constraint's type must be a string.") from e else: if ctype not in ['eq', 'ineq']: raise ValueError("Unknown constraint type '%s'." % con['type']) # check function if 'fun' not in con: raise ValueError('Constraint %d has no function defined.' % ic) # check Jacobian cjac = con.get('jac') if cjac is None: # approximate Jacobian function. The factory function is needed # to keep a reference to `fun`, see gh-4240. def cjac_factory(fun): def cjac(x, *args): x = _check_clip_x(x, new_bounds) if jac in ['2-point', '3-point', 'cs']: return approx_derivative(fun, x, method=jac, args=args, rel_step=finite_diff_rel_step, bounds=new_bounds) else: return approx_derivative(fun, x, method='2-point', abs_step=epsilon, args=args, bounds=new_bounds) return cjac cjac = cjac_factory(con['fun']) # update constraints' dictionary cons[ctype] += ({'fun': con['fun'], 'jac': cjac, 'args': con.get('args', ())}, ) exit_modes = {-1: "Gradient evaluation required (g & a)", 0: "Optimization terminated successfully", 1: "Function evaluation required (f & c)", 2: "More equality constraints than independent variables", 3: "More than 3*n iterations in LSQ subproblem", 4: "Inequality constraints incompatible", 5: "Singular matrix E in LSQ subproblem", 6: "Singular matrix C in LSQ subproblem", 7: "Rank-deficient equality constraint subproblem HFTI", 8: "Positive directional derivative for linesearch", 9: "Iteration limit reached"} # Set the parameters that SLSQP will need # meq, mieq: number of equality and inequality constraints meq = sum(map(len, [atleast_1d(c['fun'](x, *c['args'])) for c in cons['eq']])) mieq = sum(map(len, [atleast_1d(c['fun'](x, *c['args'])) for c in cons['ineq']])) # m = The total number of constraints m = meq + mieq # la = The number of constraints, or 1 if there are no constraints la = array([1, m]).max() # n = The number of independent variables n = len(x) # Define the workspaces for SLSQP n1 = n + 1 mineq = m - meq + n1 + n1 len_w = (3*n1+m)*(n1+1)+(n1-meq+1)*(mineq+2) + 2*mineq+(n1+mineq)*(n1-meq) \ + 2*meq + n1 + ((n+1)*n)//2 + 2*m + 3*n + 3*n1 + 1 len_jw = mineq w = zeros(len_w) jw = zeros(len_jw) # Decompose bounds into xl and xu if bounds is None or len(bounds) == 0: xl = np.empty(n, dtype=float) xu = np.empty(n, dtype=float) xl.fill(np.nan) xu.fill(np.nan) else: bnds = array([(_arr_to_scalar(l), _arr_to_scalar(u)) for (l, u) in bounds], float) if bnds.shape[0] != n: raise IndexError('SLSQP Error: the length of bounds is not ' 'compatible with that of x0.') with np.errstate(invalid='ignore'): bnderr = bnds[:, 0] > bnds[:, 1] if bnderr.any(): raise ValueError('SLSQP Error: lb > ub in bounds %s.' % ', '.join(str(b) for b in bnderr)) xl, xu = bnds[:, 0], bnds[:, 1] # Mark infinite bounds with nans; the Fortran code understands this infbnd = ~isfinite(bnds) xl[infbnd[:, 0]] = np.nan xu[infbnd[:, 1]] = np.nan # ScalarFunction provides function and gradient evaluation sf = _prepare_scalar_function(func, x, jac=jac, args=args, epsilon=eps, finite_diff_rel_step=finite_diff_rel_step, bounds=new_bounds) # gh11403 SLSQP sometimes exceeds bounds by 1 or 2 ULP, make sure this # doesn't get sent to the func/grad evaluator. wrapped_fun = _clip_x_for_func(sf.fun, new_bounds) wrapped_grad = _clip_x_for_func(sf.grad, new_bounds) # Initialize the iteration counter and the mode value mode = array(0, int) acc = array(acc, float) majiter = array(iter, int) majiter_prev = 0 # Initialize internal SLSQP state variables alpha = array(0, float) f0 = array(0, float) gs = array(0, float) h1 = array(0, float) h2 = array(0, float) h3 = array(0, float) h4 = array(0, float) t = array(0, float) t0 = array(0, float) tol = array(0, float) iexact = array(0, int) incons = array(0, int) ireset = array(0, int) itermx = array(0, int) line = array(0, int) n1 = array(0, int) n2 = array(0, int) n3 = array(0, int) # Print the header if iprint >= 2 if iprint >= 2: print("%5s %5s %16s %16s" % ("NIT", "FC", "OBJFUN", "GNORM")) # mode is zero on entry, so call objective, constraints and gradients # there should be no func evaluations here because it's cached from # ScalarFunction fx = wrapped_fun(x) g = append(wrapped_grad(x), 0.0) c = _eval_constraint(x, cons) a = _eval_con_normals(x, cons, la, n, m, meq, mieq) while 1: # Call SLSQP slsqp(m, meq, x, xl, xu, fx, c, g, a, acc, majiter, mode, w, jw, alpha, f0, gs, h1, h2, h3, h4, t, t0, tol, iexact, incons, ireset, itermx, line, n1, n2, n3) if mode == 1: # objective and constraint evaluation required fx = wrapped_fun(x) c = _eval_constraint(x, cons) if mode == -1: # gradient evaluation required g = append(wrapped_grad(x), 0.0) a = _eval_con_normals(x, cons, la, n, m, meq, mieq) if majiter > majiter_prev: # call callback if major iteration has incremented if callback is not None: callback(np.copy(x)) # Print the status of the current iterate if iprint > 2 if iprint >= 2: print("%5i %5i % 16.6E % 16.6E" % (majiter, sf.nfev, fx, linalg.norm(g))) # If exit mode is not -1 or 1, slsqp has completed if abs(mode) != 1: break majiter_prev = int(majiter) # Optimization loop complete. Print status if requested if iprint >= 1: print(exit_modes[int(mode)] + " (Exit mode " + str(mode) + ')') print(" Current function value:", fx) print(" Iterations:", majiter) print(" Function evaluations:", sf.nfev) print(" Gradient evaluations:", sf.ngev) return OptimizeResult(x=x, fun=fx, jac=g[:-1], nit=int(majiter), nfev=sf.nfev, njev=sf.ngev, status=int(mode), message=exit_modes[int(mode)], success=(mode == 0)) def _eval_constraint(x, cons): # Compute constraints if cons['eq']: c_eq = concatenate([atleast_1d(con['fun'](x, *con['args'])) for con in cons['eq']]) else: c_eq = zeros(0) if cons['ineq']: c_ieq = concatenate([atleast_1d(con['fun'](x, *con['args'])) for con in cons['ineq']]) else: c_ieq = zeros(0) # Now combine c_eq and c_ieq into a single matrix c = concatenate((c_eq, c_ieq)) return c def _eval_con_normals(x, cons, la, n, m, meq, mieq): # Compute the normals of the constraints if cons['eq']: a_eq = vstack([con['jac'](x, *con['args']) for con in cons['eq']]) else: # no equality constraint a_eq = zeros((meq, n)) if cons['ineq']: a_ieq = vstack([con['jac'](x, *con['args']) for con in cons['ineq']]) else: # no inequality constraint a_ieq = zeros((mieq, n)) # Now combine a_eq and a_ieq into a single a matrix if m == 0: # no constraints a = zeros((la, n)) else: a = vstack((a_eq, a_ieq)) a = concatenate((a, zeros([la, 1])), 1) return a