"""Trust-region interior point method. References ---------- .. [1] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal. "An interior point algorithm for large-scale nonlinear programming." SIAM Journal on Optimization 9.4 (1999): 877-900. .. [2] Byrd, Richard H., Guanghui Liu, and Jorge Nocedal. "On the local behavior of an interior point method for nonlinear programming." Numerical analysis 1997 (1997): 37-56. .. [3] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization" Second Edition (2006). """ import scipy.sparse as sps import numpy as np from .equality_constrained_sqp import equality_constrained_sqp from scipy.sparse.linalg import LinearOperator __all__ = ['tr_interior_point'] class BarrierSubproblem: """ Barrier optimization problem: minimize fun(x) - barrier_parameter*sum(log(s)) subject to: constr_eq(x) = 0 constr_ineq(x) + s = 0 """ def __init__(self, x0, s0, fun, grad, lagr_hess, n_vars, n_ineq, n_eq, constr, jac, barrier_parameter, tolerance, enforce_feasibility, global_stop_criteria, xtol, fun0, grad0, constr_ineq0, jac_ineq0, constr_eq0, jac_eq0): # Store parameters self.n_vars = n_vars self.x0 = x0 self.s0 = s0 self.fun = fun self.grad = grad self.lagr_hess = lagr_hess self.constr = constr self.jac = jac self.barrier_parameter = barrier_parameter self.tolerance = tolerance self.n_eq = n_eq self.n_ineq = n_ineq self.enforce_feasibility = enforce_feasibility self.global_stop_criteria = global_stop_criteria self.xtol = xtol self.fun0 = self._compute_function(fun0, constr_ineq0, s0) self.grad0 = self._compute_gradient(grad0) self.constr0 = self._compute_constr(constr_ineq0, constr_eq0, s0) self.jac0 = self._compute_jacobian(jac_eq0, jac_ineq0, s0) self.terminate = False def update(self, barrier_parameter, tolerance): self.barrier_parameter = barrier_parameter self.tolerance = tolerance def get_slack(self, z): return z[self.n_vars:self.n_vars+self.n_ineq] def get_variables(self, z): return z[:self.n_vars] def function_and_constraints(self, z): """Returns barrier function and constraints at given point. For z = [x, s], returns barrier function: function(z) = fun(x) - barrier_parameter*sum(log(s)) and barrier constraints: constraints(z) = [ constr_eq(x) ] [ constr_ineq(x) + s ] """ # Get variables and slack variables x = self.get_variables(z) s = self.get_slack(z) # Compute function and constraints f = self.fun(x) c_eq, c_ineq = self.constr(x) # Return objective function and constraints return (self._compute_function(f, c_ineq, s), self._compute_constr(c_ineq, c_eq, s)) def _compute_function(self, f, c_ineq, s): # Use technique from Nocedal and Wright book, ref [3]_, p.576, # to guarantee constraints from `enforce_feasibility` # stay feasible along iterations. s[self.enforce_feasibility] = -c_ineq[self.enforce_feasibility] log_s = [np.log(s_i) if s_i > 0 else -np.inf for s_i in s] # Compute barrier objective function return f - self.barrier_parameter*np.sum(log_s) def _compute_constr(self, c_ineq, c_eq, s): # Compute barrier constraint return np.hstack((c_eq, c_ineq + s)) def scaling(self, z): """Returns scaling vector. Given by: scaling = [ones(n_vars), s] """ s = self.get_slack(z) diag_elements = np.hstack((np.ones(self.n_vars), s)) # Diagonal matrix def matvec(vec): return diag_elements*vec return LinearOperator((self.n_vars+self.n_ineq, self.n_vars+self.n_ineq), matvec) def gradient_and_jacobian(self, z): """Returns scaled gradient. Return scaled gradient: gradient = [ grad(x) ] [ -barrier_parameter*ones(n_ineq) ] and scaled Jacobian matrix: jacobian = [ jac_eq(x) 0 ] [ jac_ineq(x) S ] Both of them scaled by the previously defined scaling factor. """ # Get variables and slack variables x = self.get_variables(z) s = self.get_slack(z) # Compute first derivatives g = self.grad(x) J_eq, J_ineq = self.jac(x) # Return gradient and Jacobian return (self._compute_gradient(g), self._compute_jacobian(J_eq, J_ineq, s)) def _compute_gradient(self, g): return np.hstack((g, -self.barrier_parameter*np.ones(self.n_ineq))) def _compute_jacobian(self, J_eq, J_ineq, s): if self.n_ineq == 0: return J_eq else: if sps.issparse(J_eq) or sps.issparse(J_ineq): # It is expected that J_eq and J_ineq # are already `csr_matrix` because of # the way ``BoxConstraint``, ``NonlinearConstraint`` # and ``LinearConstraint`` are defined. J_eq = sps.csr_matrix(J_eq) J_ineq = sps.csr_matrix(J_ineq) return self._assemble_sparse_jacobian(J_eq, J_ineq, s) else: S = np.diag(s) zeros = np.zeros((self.n_eq, self.n_ineq)) # Convert to matrix if sps.issparse(J_ineq): J_ineq = J_ineq.toarray() if sps.issparse(J_eq): J_eq = J_eq.toarray() # Concatenate matrices return np.block([[J_eq, zeros], [J_ineq, S]]) def _assemble_sparse_jacobian(self, J_eq, J_ineq, s): """Assemble sparse Jacobian given its components. Given ``J_eq``, ``J_ineq`` and ``s`` returns: jacobian = [ J_eq, 0 ] [ J_ineq, diag(s) ] It is equivalent to: sps.bmat([[ J_eq, None ], [ J_ineq, diag(s) ]], "csr") but significantly more efficient for this given structure. """ n_vars, n_ineq, n_eq = self.n_vars, self.n_ineq, self.n_eq J_aux = sps.vstack([J_eq, J_ineq], "csr") indptr, indices, data = J_aux.indptr, J_aux.indices, J_aux.data new_indptr = indptr + np.hstack((np.zeros(n_eq, dtype=int), np.arange(n_ineq+1, dtype=int))) size = indices.size+n_ineq new_indices = np.empty(size) new_data = np.empty(size) mask = np.full(size, False, bool) mask[new_indptr[-n_ineq:]-1] = True new_indices[mask] = n_vars+np.arange(n_ineq) new_indices[~mask] = indices new_data[mask] = s new_data[~mask] = data J = sps.csr_matrix((new_data, new_indices, new_indptr), (n_eq + n_ineq, n_vars + n_ineq)) return J def lagrangian_hessian_x(self, z, v): """Returns Lagrangian Hessian (in relation to `x`) -> Hx""" x = self.get_variables(z) # Get lagrange multipliers related to nonlinear equality constraints v_eq = v[:self.n_eq] # Get lagrange multipliers related to nonlinear ineq. constraints v_ineq = v[self.n_eq:self.n_eq+self.n_ineq] lagr_hess = self.lagr_hess return lagr_hess(x, v_eq, v_ineq) def lagrangian_hessian_s(self, z, v): """Returns scaled Lagrangian Hessian (in relation to`s`) -> S Hs S""" s = self.get_slack(z) # Using the primal formulation: # S Hs S = diag(s)*diag(barrier_parameter/s**2)*diag(s). # Reference [1]_ p. 882, formula (3.1) primal = self.barrier_parameter # Using the primal-dual formulation # S Hs S = diag(s)*diag(v/s)*diag(s) # Reference [1]_ p. 883, formula (3.11) primal_dual = v[-self.n_ineq:]*s # Uses the primal-dual formulation for # positives values of v_ineq, and primal # formulation for the remaining ones. return np.where(v[-self.n_ineq:] > 0, primal_dual, primal) def lagrangian_hessian(self, z, v): """Returns scaled Lagrangian Hessian""" # Compute Hessian in relation to x and s Hx = self.lagrangian_hessian_x(z, v) if self.n_ineq > 0: S_Hs_S = self.lagrangian_hessian_s(z, v) # The scaled Lagragian Hessian is: # [ Hx 0 ] # [ 0 S Hs S ] def matvec(vec): vec_x = self.get_variables(vec) vec_s = self.get_slack(vec) if self.n_ineq > 0: return np.hstack((Hx.dot(vec_x), S_Hs_S*vec_s)) else: return Hx.dot(vec_x) return LinearOperator((self.n_vars+self.n_ineq, self.n_vars+self.n_ineq), matvec) def stop_criteria(self, state, z, last_iteration_failed, optimality, constr_violation, trust_radius, penalty, cg_info): """Stop criteria to the barrier problem. The criteria here proposed is similar to formula (2.3) from [1]_, p.879. """ x = self.get_variables(z) if self.global_stop_criteria(state, x, last_iteration_failed, trust_radius, penalty, cg_info, self.barrier_parameter, self.tolerance): self.terminate = True return True else: g_cond = (optimality < self.tolerance and constr_violation < self.tolerance) x_cond = trust_radius < self.xtol return g_cond or x_cond def tr_interior_point(fun, grad, lagr_hess, n_vars, n_ineq, n_eq, constr, jac, x0, fun0, grad0, constr_ineq0, jac_ineq0, constr_eq0, jac_eq0, stop_criteria, enforce_feasibility, xtol, state, initial_barrier_parameter, initial_tolerance, initial_penalty, initial_trust_radius, factorization_method): """Trust-region interior points method. Solve problem: minimize fun(x) subject to: constr_ineq(x) <= 0 constr_eq(x) = 0 using trust-region interior point method described in [1]_. """ # BOUNDARY_PARAMETER controls the decrease on the slack # variables. Represents ``tau`` from [1]_ p.885, formula (3.18). BOUNDARY_PARAMETER = 0.995 # BARRIER_DECAY_RATIO controls the decay of the barrier parameter # and of the subproblem toloerance. Represents ``theta`` from [1]_ p.879. BARRIER_DECAY_RATIO = 0.2 # TRUST_ENLARGEMENT controls the enlargement on trust radius # after each iteration TRUST_ENLARGEMENT = 5 # Default enforce_feasibility if enforce_feasibility is None: enforce_feasibility = np.zeros(n_ineq, bool) # Initial Values barrier_parameter = initial_barrier_parameter tolerance = initial_tolerance trust_radius = initial_trust_radius # Define initial value for the slack variables s0 = np.maximum(-1.5*constr_ineq0, np.ones(n_ineq)) # Define barrier subproblem subprob = BarrierSubproblem( x0, s0, fun, grad, lagr_hess, n_vars, n_ineq, n_eq, constr, jac, barrier_parameter, tolerance, enforce_feasibility, stop_criteria, xtol, fun0, grad0, constr_ineq0, jac_ineq0, constr_eq0, jac_eq0) # Define initial parameter for the first iteration. z = np.hstack((x0, s0)) fun0_subprob, constr0_subprob = subprob.fun0, subprob.constr0 grad0_subprob, jac0_subprob = subprob.grad0, subprob.jac0 # Define trust region bounds trust_lb = np.hstack((np.full(subprob.n_vars, -np.inf), np.full(subprob.n_ineq, -BOUNDARY_PARAMETER))) trust_ub = np.full(subprob.n_vars+subprob.n_ineq, np.inf) # Solves a sequence of barrier problems while True: # Solve SQP subproblem z, state = equality_constrained_sqp( subprob.function_and_constraints, subprob.gradient_and_jacobian, subprob.lagrangian_hessian, z, fun0_subprob, grad0_subprob, constr0_subprob, jac0_subprob, subprob.stop_criteria, state, initial_penalty, trust_radius, factorization_method, trust_lb, trust_ub, subprob.scaling) if subprob.terminate: break # Update parameters trust_radius = max(initial_trust_radius, TRUST_ENLARGEMENT*state.tr_radius) # TODO: Use more advanced strategies from [2]_ # to update this parameters. barrier_parameter *= BARRIER_DECAY_RATIO tolerance *= BARRIER_DECAY_RATIO # Update Barrier Problem subprob.update(barrier_parameter, tolerance) # Compute initial values for next iteration fun0_subprob, constr0_subprob = subprob.function_and_constraints(z) grad0_subprob, jac0_subprob = subprob.gradient_and_jacobian(z) # Get x and s x = subprob.get_variables(z) return x, state