import pytest from functools import lru_cache from numpy.testing import (assert_warns, assert_, assert_allclose, assert_equal, assert_array_equal, suppress_warnings) import numpy as np from numpy import finfo, power, nan, isclose, sqrt, exp, sin, cos from scipy import optimize from scipy.optimize import (_zeros_py as zeros, newton, root_scalar, OptimizeResult) from scipy._lib._util import getfullargspec_no_self as _getfullargspec # Import testing parameters from scipy.optimize._tstutils import get_tests, functions as tstutils_functions TOL = 4*np.finfo(float).eps # tolerance _FLOAT_EPS = finfo(float).eps bracket_methods = [zeros.bisect, zeros.ridder, zeros.brentq, zeros.brenth, zeros.toms748] gradient_methods = [zeros.newton] all_methods = bracket_methods + gradient_methods # A few test functions used frequently: # # A simple quadratic, (x-1)^2 - 1 def f1(x): return x ** 2 - 2 * x - 1 def f1_1(x): return 2 * x - 2 def f1_2(x): return 2.0 + 0 * x def f1_and_p_and_pp(x): return f1(x), f1_1(x), f1_2(x) # Simple transcendental function def f2(x): return exp(x) - cos(x) def f2_1(x): return exp(x) + sin(x) def f2_2(x): return exp(x) + cos(x) # lru cached function @lru_cache def f_lrucached(x): return x class TestScalarRootFinders: # Basic tests for all scalar root finders xtol = 4 * np.finfo(float).eps rtol = 4 * np.finfo(float).eps def _run_one_test(self, tc, method, sig_args_keys=None, sig_kwargs_keys=None, **kwargs): method_args = [] for k in sig_args_keys or []: if k not in tc: # If a,b not present use x0, x1. Similarly for f and func k = {'a': 'x0', 'b': 'x1', 'func': 'f'}.get(k, k) method_args.append(tc[k]) method_kwargs = dict(**kwargs) method_kwargs.update({'full_output': True, 'disp': False}) for k in sig_kwargs_keys or []: method_kwargs[k] = tc[k] root = tc.get('root') func_args = tc.get('args', ()) try: r, rr = method(*method_args, args=func_args, **method_kwargs) return root, rr, tc except Exception: return root, zeros.RootResults(nan, -1, -1, zeros._EVALUEERR, method), tc def run_tests(self, tests, method, name, known_fail=None, **kwargs): r"""Run test-cases using the specified method and the supplied signature. Extract the arguments for the method call from the test case dictionary using the supplied keys for the method's signature.""" # The methods have one of two base signatures: # (f, a, b, **kwargs) # newton # (func, x0, **kwargs) # bisect/brentq/... # FullArgSpec with args, varargs, varkw, defaults, ... sig = _getfullargspec(method) assert_(not sig.kwonlyargs) nDefaults = len(sig.defaults) nRequired = len(sig.args) - nDefaults sig_args_keys = sig.args[:nRequired] sig_kwargs_keys = [] if name in ['secant', 'newton', 'halley']: if name in ['newton', 'halley']: sig_kwargs_keys.append('fprime') if name in ['halley']: sig_kwargs_keys.append('fprime2') kwargs['tol'] = self.xtol else: kwargs['xtol'] = self.xtol kwargs['rtol'] = self.rtol results = [list(self._run_one_test( tc, method, sig_args_keys=sig_args_keys, sig_kwargs_keys=sig_kwargs_keys, **kwargs)) for tc in tests] # results= [[true root, full output, tc], ...] known_fail = known_fail or [] notcvgd = [elt for elt in results if not elt[1].converged] notcvgd = [elt for elt in notcvgd if elt[-1]['ID'] not in known_fail] notcvged_IDS = [elt[-1]['ID'] for elt in notcvgd] assert_equal([len(notcvged_IDS), notcvged_IDS], [0, []]) # The usable xtol and rtol depend on the test tols = {'xtol': self.xtol, 'rtol': self.rtol} tols.update(**kwargs) rtol = tols['rtol'] atol = tols.get('tol', tols['xtol']) cvgd = [elt for elt in results if elt[1].converged] approx = [elt[1].root for elt in cvgd] correct = [elt[0] for elt in cvgd] # See if the root matches the reference value notclose = [[a] + elt for a, c, elt in zip(approx, correct, cvgd) if not isclose(a, c, rtol=rtol, atol=atol) and elt[-1]['ID'] not in known_fail] # If not, evaluate the function and see if is 0 at the purported root fvs = [tc['f'](aroot, *tc.get('args', tuple())) for aroot, c, fullout, tc in notclose] notclose = [[fv] + elt for fv, elt in zip(fvs, notclose) if fv != 0] assert_equal([notclose, len(notclose)], [[], 0]) method_from_result = [result[1].method for result in results] expected_method = [name for _ in results] assert_equal(method_from_result, expected_method) def run_collection(self, collection, method, name, smoothness=None, known_fail=None, **kwargs): r"""Run a collection of tests using the specified method. The name is used to determine some optional arguments.""" tests = get_tests(collection, smoothness=smoothness) self.run_tests(tests, method, name, known_fail=known_fail, **kwargs) class TestBracketMethods(TestScalarRootFinders): @pytest.mark.parametrize('method', bracket_methods) @pytest.mark.parametrize('function', tstutils_functions) def test_basic_root_scalar(self, method, function): # Tests bracketing root finders called via `root_scalar` on a small # set of simple problems, each of which has a root at `x=1`. Checks for # converged status and that the root was found. a, b = .5, sqrt(3) r = root_scalar(function, method=method.__name__, bracket=[a, b], x0=a, xtol=self.xtol, rtol=self.rtol) assert r.converged assert_allclose(r.root, 1.0, atol=self.xtol, rtol=self.rtol) assert r.method == method.__name__ @pytest.mark.parametrize('method', bracket_methods) @pytest.mark.parametrize('function', tstutils_functions) def test_basic_individual(self, method, function): # Tests individual bracketing root finders on a small set of simple # problems, each of which has a root at `x=1`. Checks for converged # status and that the root was found. a, b = .5, sqrt(3) root, r = method(function, a, b, xtol=self.xtol, rtol=self.rtol, full_output=True) assert r.converged assert_allclose(root, 1.0, atol=self.xtol, rtol=self.rtol) @pytest.mark.parametrize('method', bracket_methods) def test_aps_collection(self, method): self.run_collection('aps', method, method.__name__, smoothness=1) @pytest.mark.parametrize('method', [zeros.bisect, zeros.ridder, zeros.toms748]) def test_chandrupatla_collection(self, method): known_fail = {'fun7.4'} if method == zeros.ridder else {} self.run_collection('chandrupatla', method, method.__name__, known_fail=known_fail) @pytest.mark.parametrize('method', bracket_methods) def test_lru_cached_individual(self, method): # check that https://github.com/scipy/scipy/issues/10846 is fixed # (`root_scalar` failed when passed a function that was `@lru_cache`d) a, b = -1, 1 root, r = method(f_lrucached, a, b, full_output=True) assert r.converged assert_allclose(root, 0) class TestNewton(TestScalarRootFinders): def test_newton_collections(self): known_fail = ['aps.13.00'] known_fail += ['aps.12.05', 'aps.12.17'] # fails under Windows Py27 for collection in ['aps', 'complex']: self.run_collection(collection, zeros.newton, 'newton', smoothness=2, known_fail=known_fail) def test_halley_collections(self): known_fail = ['aps.12.06', 'aps.12.07', 'aps.12.08', 'aps.12.09', 'aps.12.10', 'aps.12.11', 'aps.12.12', 'aps.12.13', 'aps.12.14', 'aps.12.15', 'aps.12.16', 'aps.12.17', 'aps.12.18', 'aps.13.00'] for collection in ['aps', 'complex']: self.run_collection(collection, zeros.newton, 'halley', smoothness=2, known_fail=known_fail) def test_newton(self): for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]: x = zeros.newton(f, 3, tol=1e-6) assert_allclose(f(x), 0, atol=1e-6) x = zeros.newton(f, 3, x1=5, tol=1e-6) # secant, x0 and x1 assert_allclose(f(x), 0, atol=1e-6) x = zeros.newton(f, 3, fprime=f_1, tol=1e-6) # newton assert_allclose(f(x), 0, atol=1e-6) x = zeros.newton(f, 3, fprime=f_1, fprime2=f_2, tol=1e-6) # halley assert_allclose(f(x), 0, atol=1e-6) def test_newton_by_name(self): r"""Invoke newton through root_scalar()""" for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]: r = root_scalar(f, method='newton', x0=3, fprime=f_1, xtol=1e-6) assert_allclose(f(r.root), 0, atol=1e-6) for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]: r = root_scalar(f, method='newton', x0=3, xtol=1e-6) # without f' assert_allclose(f(r.root), 0, atol=1e-6) def test_secant_by_name(self): r"""Invoke secant through root_scalar()""" for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]: r = root_scalar(f, method='secant', x0=3, x1=2, xtol=1e-6) assert_allclose(f(r.root), 0, atol=1e-6) r = root_scalar(f, method='secant', x0=3, x1=5, xtol=1e-6) assert_allclose(f(r.root), 0, atol=1e-6) for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]: r = root_scalar(f, method='secant', x0=3, xtol=1e-6) # without x1 assert_allclose(f(r.root), 0, atol=1e-6) def test_halley_by_name(self): r"""Invoke halley through root_scalar()""" for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]: r = root_scalar(f, method='halley', x0=3, fprime=f_1, fprime2=f_2, xtol=1e-6) assert_allclose(f(r.root), 0, atol=1e-6) def test_root_scalar_fail(self): message = 'fprime2 must be specified for halley' with pytest.raises(ValueError, match=message): root_scalar(f1, method='halley', fprime=f1_1, x0=3, xtol=1e-6) # no fprime2 message = 'fprime must be specified for halley' with pytest.raises(ValueError, match=message): root_scalar(f1, method='halley', fprime2=f1_2, x0=3, xtol=1e-6) # no fprime def test_array_newton(self): """test newton with array""" def f1(x, *a): b = a[0] + x * a[3] return a[1] - a[2] * (np.exp(b / a[5]) - 1.0) - b / a[4] - x def f1_1(x, *a): b = a[3] / a[5] return -a[2] * np.exp(a[0] / a[5] + x * b) * b - a[3] / a[4] - 1 def f1_2(x, *a): b = a[3] / a[5] return -a[2] * np.exp(a[0] / a[5] + x * b) * b**2 a0 = np.array([ 5.32725221, 5.48673747, 5.49539973, 5.36387202, 4.80237316, 1.43764452, 5.23063958, 5.46094772, 5.50512718, 5.42046290 ]) a1 = (np.sin(range(10)) + 1.0) * 7.0 args = (a0, a1, 1e-09, 0.004, 10, 0.27456) x0 = [7.0] * 10 x = zeros.newton(f1, x0, f1_1, args) x_expected = ( 6.17264965, 11.7702805, 12.2219954, 7.11017681, 1.18151293, 0.143707955, 4.31928228, 10.5419107, 12.7552490, 8.91225749 ) assert_allclose(x, x_expected) # test halley's x = zeros.newton(f1, x0, f1_1, args, fprime2=f1_2) assert_allclose(x, x_expected) # test secant x = zeros.newton(f1, x0, args=args) assert_allclose(x, x_expected) def test_array_newton_complex(self): def f(x): return x + 1+1j def fprime(x): return 1.0 t = np.full(4, 1j) x = zeros.newton(f, t, fprime=fprime) assert_allclose(f(x), 0.) # should work even if x0 is not complex t = np.ones(4) x = zeros.newton(f, t, fprime=fprime) assert_allclose(f(x), 0.) x = zeros.newton(f, t) assert_allclose(f(x), 0.) def test_array_secant_active_zero_der(self): """test secant doesn't continue to iterate zero derivatives""" x = zeros.newton(lambda x, *a: x*x - a[0], x0=[4.123, 5], args=[np.array([17, 25])]) assert_allclose(x, (4.123105625617661, 5.0)) def test_array_newton_integers(self): # test secant with float x = zeros.newton(lambda y, z: z - y ** 2, [4.0] * 2, args=([15.0, 17.0],)) assert_allclose(x, (3.872983346207417, 4.123105625617661)) # test integer becomes float x = zeros.newton(lambda y, z: z - y ** 2, [4] * 2, args=([15, 17],)) assert_allclose(x, (3.872983346207417, 4.123105625617661)) def test_array_newton_zero_der_failures(self): # test derivative zero warning assert_warns(RuntimeWarning, zeros.newton, lambda y: y**2 - 2, [0., 0.], lambda y: 2 * y) # test failures and zero_der with pytest.warns(RuntimeWarning): results = zeros.newton(lambda y: y**2 - 2, [0., 0.], lambda y: 2*y, full_output=True) assert_allclose(results.root, 0) assert results.zero_der.all() assert not results.converged.any() def test_newton_combined(self): def f1(x): return x ** 2 - 2 * x - 1 def f1_1(x): return 2 * x - 2 def f1_2(x): return 2.0 + 0 * x def f1_and_p_and_pp(x): return x**2 - 2*x-1, 2*x-2, 2.0 sol0 = root_scalar(f1, method='newton', x0=3, fprime=f1_1) sol = root_scalar(f1_and_p_and_pp, method='newton', x0=3, fprime=True) assert_allclose(sol0.root, sol.root, atol=1e-8) assert_equal(2*sol.function_calls, sol0.function_calls) sol0 = root_scalar(f1, method='halley', x0=3, fprime=f1_1, fprime2=f1_2) sol = root_scalar(f1_and_p_and_pp, method='halley', x0=3, fprime2=True) assert_allclose(sol0.root, sol.root, atol=1e-8) assert_equal(3*sol.function_calls, sol0.function_calls) def test_newton_full_output(self, capsys): # Test the full_output capability, both when converging and not. # Use simple polynomials, to avoid hitting platform dependencies # (e.g., exp & trig) in number of iterations x0 = 3 expected_counts = [(6, 7), (5, 10), (3, 9)] for derivs in range(3): kwargs = {'tol': 1e-6, 'full_output': True, } for k, v in [['fprime', f1_1], ['fprime2', f1_2]][:derivs]: kwargs[k] = v x, r = zeros.newton(f1, x0, disp=False, **kwargs) assert_(r.converged) assert_equal(x, r.root) assert_equal((r.iterations, r.function_calls), expected_counts[derivs]) if derivs == 0: assert r.function_calls <= r.iterations + 1 else: assert_equal(r.function_calls, (derivs + 1) * r.iterations) # Now repeat, allowing one fewer iteration to force convergence failure iters = r.iterations - 1 x, r = zeros.newton(f1, x0, maxiter=iters, disp=False, **kwargs) assert_(not r.converged) assert_equal(x, r.root) assert_equal(r.iterations, iters) if derivs == 1: # Check that the correct Exception is raised and # validate the start of the message. msg = 'Failed to converge after %d iterations, value is .*' % (iters) with pytest.raises(RuntimeError, match=msg): x, r = zeros.newton(f1, x0, maxiter=iters, disp=True, **kwargs) def test_deriv_zero_warning(self): def func(x): return x ** 2 - 2.0 def dfunc(x): return 2 * x assert_warns(RuntimeWarning, zeros.newton, func, 0.0, dfunc, disp=False) with pytest.raises(RuntimeError, match='Derivative was zero'): zeros.newton(func, 0.0, dfunc) def test_newton_does_not_modify_x0(self): # https://github.com/scipy/scipy/issues/9964 x0 = np.array([0.1, 3]) x0_copy = x0.copy() # Copy to test for equality. newton(np.sin, x0, np.cos) assert_array_equal(x0, x0_copy) def test_gh17570_defaults(self): # Previously, when fprime was not specified, root_scalar would default # to secant. When x1 was not specified, secant failed. # Check that without fprime, the default is secant if x1 is specified # and newton otherwise. res_newton_default = root_scalar(f1, method='newton', x0=3, xtol=1e-6) res_secant_default = root_scalar(f1, method='secant', x0=3, x1=2, xtol=1e-6) # `newton` uses the secant method when `x1` and `x2` are specified res_secant = newton(f1, x0=3, x1=2, tol=1e-6, full_output=True)[1] # all three found a root assert_allclose(f1(res_newton_default.root), 0, atol=1e-6) assert res_newton_default.root.shape == tuple() assert_allclose(f1(res_secant_default.root), 0, atol=1e-6) assert res_secant_default.root.shape == tuple() assert_allclose(f1(res_secant.root), 0, atol=1e-6) assert res_secant.root.shape == tuple() # Defaults are correct assert (res_secant_default.root == res_secant.root != res_newton_default.iterations) assert (res_secant_default.iterations == res_secant_default.function_calls - 1 # true for secant == res_secant.iterations != res_newton_default.iterations == res_newton_default.function_calls/2) # newton 2-point diff @pytest.mark.parametrize('kwargs', [dict(), {'method': 'newton'}]) def test_args_gh19090(self, kwargs): def f(x, a, b): assert a == 3 assert b == 1 return (x ** a - b) res = optimize.root_scalar(f, x0=3, args=(3, 1), **kwargs) assert res.converged assert_allclose(res.root, 1) @pytest.mark.parametrize('method', ['secant', 'newton']) def test_int_x0_gh19280(self, method): # Originally, `newton` ensured that only floats were passed to the # callable. This was indadvertently changed by gh-17669. Check that # it has been changed back. def f(x): # an integer raised to a negative integer power would fail return x**-2 - 2 res = optimize.root_scalar(f, x0=1, method=method) assert res.converged assert_allclose(abs(res.root), 2**-0.5) assert res.root.dtype == np.dtype(np.float64) def test_gh_5555(): root = 0.1 def f(x): return x - root methods = [zeros.bisect, zeros.ridder] xtol = rtol = TOL for method in methods: res = method(f, -1e8, 1e7, xtol=xtol, rtol=rtol) assert_allclose(root, res, atol=xtol, rtol=rtol, err_msg='method %s' % method.__name__) def test_gh_5557(): # Show that without the changes in 5557 brentq and brenth might # only achieve a tolerance of 2*(xtol + rtol*|res|). # f linearly interpolates (0, -0.1), (0.5, -0.1), and (1, # 0.4). The important parts are that |f(0)| < |f(1)| (so that # brent takes 0 as the initial guess), |f(0)| < atol (so that # brent accepts 0 as the root), and that the exact root of f lies # more than atol away from 0 (so that brent doesn't achieve the # desired tolerance). def f(x): if x < 0.5: return -0.1 else: return x - 0.6 atol = 0.51 rtol = 4 * _FLOAT_EPS methods = [zeros.brentq, zeros.brenth] for method in methods: res = method(f, 0, 1, xtol=atol, rtol=rtol) assert_allclose(0.6, res, atol=atol, rtol=rtol) def test_brent_underflow_in_root_bracketing(): # Testing if an interval [a,b] brackets a zero of a function # by checking f(a)*f(b) < 0 is not reliable when the product # underflows/overflows. (reported in issue# 13737) underflow_scenario = (-450.0, -350.0, -400.0) overflow_scenario = (350.0, 450.0, 400.0) for a, b, root in [underflow_scenario, overflow_scenario]: c = np.exp(root) for method in [zeros.brenth, zeros.brentq]: res = method(lambda x: np.exp(x)-c, a, b) assert_allclose(root, res) class TestRootResults: r = zeros.RootResults(root=1.0, iterations=44, function_calls=46, flag=0, method="newton") def test_repr(self): expected_repr = (" converged: True\n flag: converged" "\n function_calls: 46\n iterations: 44\n" " root: 1.0\n method: newton") assert_equal(repr(self.r), expected_repr) def test_type(self): assert isinstance(self.r, OptimizeResult) def test_complex_halley(): """Test Halley's works with complex roots""" def f(x, *a): return a[0] * x**2 + a[1] * x + a[2] def f_1(x, *a): return 2 * a[0] * x + a[1] def f_2(x, *a): retval = 2 * a[0] try: size = len(x) except TypeError: return retval else: return [retval] * size z = complex(1.0, 2.0) coeffs = (2.0, 3.0, 4.0) y = zeros.newton(f, z, args=coeffs, fprime=f_1, fprime2=f_2, tol=1e-6) # (-0.75000000000000078+1.1989578808281789j) assert_allclose(f(y, *coeffs), 0, atol=1e-6) z = [z] * 10 coeffs = (2.0, 3.0, 4.0) y = zeros.newton(f, z, args=coeffs, fprime=f_1, fprime2=f_2, tol=1e-6) assert_allclose(f(y, *coeffs), 0, atol=1e-6) def test_zero_der_nz_dp(capsys): """Test secant method with a non-zero dp, but an infinite newton step""" # pick a symmetrical functions and choose a point on the side that with dx # makes a secant that is a flat line with zero slope, EG: f = (x - 100)**2, # which has a root at x = 100 and is symmetrical around the line x = 100 # we have to pick a really big number so that it is consistently true # now find a point on each side so that the secant has a zero slope dx = np.finfo(float).eps ** 0.33 # 100 - p0 = p1 - 100 = p0 * (1 + dx) + dx - 100 # -> 200 = p0 * (2 + dx) + dx p0 = (200.0 - dx) / (2.0 + dx) with suppress_warnings() as sup: sup.filter(RuntimeWarning, "RMS of") x = zeros.newton(lambda y: (y - 100.0)**2, x0=[p0] * 10) assert_allclose(x, [100] * 10) # test scalar cases too p0 = (2.0 - 1e-4) / (2.0 + 1e-4) with suppress_warnings() as sup: sup.filter(RuntimeWarning, "Tolerance of") x = zeros.newton(lambda y: (y - 1.0) ** 2, x0=p0, disp=False) assert_allclose(x, 1) with pytest.raises(RuntimeError, match='Tolerance of'): x = zeros.newton(lambda y: (y - 1.0) ** 2, x0=p0, disp=True) p0 = (-2.0 + 1e-4) / (2.0 + 1e-4) with suppress_warnings() as sup: sup.filter(RuntimeWarning, "Tolerance of") x = zeros.newton(lambda y: (y + 1.0) ** 2, x0=p0, disp=False) assert_allclose(x, -1) with pytest.raises(RuntimeError, match='Tolerance of'): x = zeros.newton(lambda y: (y + 1.0) ** 2, x0=p0, disp=True) def test_array_newton_failures(): """Test that array newton fails as expected""" # p = 0.68 # [MPa] # dp = -0.068 * 1e6 # [Pa] # T = 323 # [K] diameter = 0.10 # [m] # L = 100 # [m] roughness = 0.00015 # [m] rho = 988.1 # [kg/m**3] mu = 5.4790e-04 # [Pa*s] u = 2.488 # [m/s] reynolds_number = rho * u * diameter / mu # Reynolds number def colebrook_eqn(darcy_friction, re, dia): return (1 / np.sqrt(darcy_friction) + 2 * np.log10(roughness / 3.7 / dia + 2.51 / re / np.sqrt(darcy_friction))) # only some failures with pytest.warns(RuntimeWarning): result = zeros.newton( colebrook_eqn, x0=[0.01, 0.2, 0.02223, 0.3], maxiter=2, args=[reynolds_number, diameter], full_output=True ) assert not result.converged.all() # they all fail with pytest.raises(RuntimeError): result = zeros.newton( colebrook_eqn, x0=[0.01] * 2, maxiter=2, args=[reynolds_number, diameter], full_output=True ) # this test should **not** raise a RuntimeWarning def test_gh8904_zeroder_at_root_fails(): """Test that Newton or Halley don't warn if zero derivative at root""" # a function that has a zero derivative at it's root def f_zeroder_root(x): return x**3 - x**2 # should work with secant r = zeros.newton(f_zeroder_root, x0=0) assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol) # test again with array r = zeros.newton(f_zeroder_root, x0=[0]*10) assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol) # 1st derivative def fder(x): return 3 * x**2 - 2 * x # 2nd derivative def fder2(x): return 6*x - 2 # should work with newton and halley r = zeros.newton(f_zeroder_root, x0=0, fprime=fder) assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol) r = zeros.newton(f_zeroder_root, x0=0, fprime=fder, fprime2=fder2) assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol) # test again with array r = zeros.newton(f_zeroder_root, x0=[0]*10, fprime=fder) assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol) r = zeros.newton(f_zeroder_root, x0=[0]*10, fprime=fder, fprime2=fder2) assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol) # also test that if a root is found we do not raise RuntimeWarning even if # the derivative is zero, EG: at x = 0.5, then fval = -0.125 and # fder = -0.25 so the next guess is 0.5 - (-0.125/-0.5) = 0 which is the # root, but if the solver continued with that guess, then it will calculate # a zero derivative, so it should return the root w/o RuntimeWarning r = zeros.newton(f_zeroder_root, x0=0.5, fprime=fder) assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol) # test again with array r = zeros.newton(f_zeroder_root, x0=[0.5]*10, fprime=fder) assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol) # doesn't apply to halley def test_gh_8881(): r"""Test that Halley's method realizes that the 2nd order adjustment is too big and drops off to the 1st order adjustment.""" n = 9 def f(x): return power(x, 1.0/n) - power(n, 1.0/n) def fp(x): return power(x, (1.0-n)/n)/n def fpp(x): return power(x, (1.0-2*n)/n) * (1.0/n) * (1.0-n)/n x0 = 0.1 # The root is at x=9. # The function has positive slope, x0 < root. # Newton succeeds in 8 iterations rt, r = newton(f, x0, fprime=fp, full_output=True) assert r.converged # Before the Issue 8881/PR 8882, halley would send x in the wrong direction. # Check that it now succeeds. rt, r = newton(f, x0, fprime=fp, fprime2=fpp, full_output=True) assert r.converged def test_gh_9608_preserve_array_shape(): """ Test that shape is preserved for array inputs even if fprime or fprime2 is scalar """ def f(x): return x**2 def fp(x): return 2 * x def fpp(x): return 2 x0 = np.array([-2], dtype=np.float32) rt, r = newton(f, x0, fprime=fp, fprime2=fpp, full_output=True) assert r.converged x0_array = np.array([-2, -3], dtype=np.float32) # This next invocation should fail with pytest.raises(IndexError): result = zeros.newton( f, x0_array, fprime=fp, fprime2=fpp, full_output=True ) def fpp_array(x): return np.full(np.shape(x), 2, dtype=np.float32) result = zeros.newton( f, x0_array, fprime=fp, fprime2=fpp_array, full_output=True ) assert result.converged.all() @pytest.mark.parametrize( "maximum_iterations,flag_expected", [(10, zeros.CONVERR), (100, zeros.CONVERGED)]) def test_gh9254_flag_if_maxiter_exceeded(maximum_iterations, flag_expected): """ Test that if the maximum iterations is exceeded that the flag is not converged. """ result = zeros.brentq( lambda x: ((1.2*x - 2.3)*x + 3.4)*x - 4.5, -30, 30, (), 1e-6, 1e-6, maximum_iterations, full_output=True, disp=False) assert result[1].flag == flag_expected if flag_expected == zeros.CONVERR: # didn't converge because exceeded maximum iterations assert result[1].iterations == maximum_iterations elif flag_expected == zeros.CONVERGED: # converged before maximum iterations assert result[1].iterations < maximum_iterations def test_gh9551_raise_error_if_disp_true(): """Test that if disp is true then zero derivative raises RuntimeError""" def f(x): return x*x + 1 def f_p(x): return 2*x assert_warns(RuntimeWarning, zeros.newton, f, 1.0, f_p, disp=False) with pytest.raises( RuntimeError, match=r'^Derivative was zero\. Failed to converge after \d+ iterations, ' r'value is [+-]?\d*\.\d+\.$'): zeros.newton(f, 1.0, f_p) root = zeros.newton(f, complex(10.0, 10.0), f_p) assert_allclose(root, complex(0.0, 1.0)) @pytest.mark.parametrize('solver_name', ['brentq', 'brenth', 'bisect', 'ridder', 'toms748']) def test_gh3089_8394(solver_name): # gh-3089 and gh-8394 reported that bracketing solvers returned incorrect # results when they encountered NaNs. Check that this is resolved. def f(x): return np.nan solver = getattr(zeros, solver_name) with pytest.raises(ValueError, match="The function value at x..."): solver(f, 0, 1) @pytest.mark.parametrize('method', ['brentq', 'brenth', 'bisect', 'ridder', 'toms748']) def test_gh18171(method): # gh-3089 and gh-8394 reported that bracketing solvers returned incorrect # results when they encountered NaNs. Check that `root_scalar` returns # normally but indicates that convergence was unsuccessful. See gh-18171. def f(x): f._count += 1 return np.nan f._count = 0 res = root_scalar(f, bracket=(0, 1), method=method) assert res.converged is False assert res.flag.startswith("The function value at x") assert res.function_calls == f._count assert str(res.root) in res.flag @pytest.mark.parametrize('solver_name', ['brentq', 'brenth', 'bisect', 'ridder', 'toms748']) @pytest.mark.parametrize('rs_interface', [True, False]) def test_function_calls(solver_name, rs_interface): # There do not appear to be checks that the bracketing solvers report the # correct number of function evaluations. Check that this is the case. solver = ((lambda f, a, b, **kwargs: root_scalar(f, bracket=(a, b))) if rs_interface else getattr(zeros, solver_name)) def f(x): f.calls += 1 return x**2 - 1 f.calls = 0 res = solver(f, 0, 10, full_output=True) if rs_interface: assert res.function_calls == f.calls else: assert res[1].function_calls == f.calls def test_gh_14486_converged_false(): """Test that zero slope with secant method results in a converged=False""" def lhs(x): return x * np.exp(-x*x) - 0.07 with pytest.warns(RuntimeWarning, match='Tolerance of'): res = root_scalar(lhs, method='secant', x0=-0.15, x1=1.0) assert not res.converged assert res.flag == 'convergence error' with pytest.warns(RuntimeWarning, match='Tolerance of'): res = newton(lhs, x0=-0.15, x1=1.0, disp=False, full_output=True)[1] assert not res.converged assert res.flag == 'convergence error' @pytest.mark.parametrize('solver_name', ['brentq', 'brenth', 'bisect', 'ridder', 'toms748']) @pytest.mark.parametrize('rs_interface', [True, False]) def test_gh5584(solver_name, rs_interface): # gh-5584 reported that an underflow can cause sign checks in the algorithm # to fail. Check that this is resolved. solver = ((lambda f, a, b, **kwargs: root_scalar(f, bracket=(a, b))) if rs_interface else getattr(zeros, solver_name)) def f(x): return 1e-200*x # Report failure when signs are the same with pytest.raises(ValueError, match='...must have different signs'): solver(f, -0.5, -0.4, full_output=True) # Solve successfully when signs are different res = solver(f, -0.5, 0.4, full_output=True) res = res if rs_interface else res[1] assert res.converged assert_allclose(res.root, 0, atol=1e-8) # Solve successfully when one side is negative zero res = solver(f, -0.5, float('-0.0'), full_output=True) res = res if rs_interface else res[1] assert res.converged assert_allclose(res.root, 0, atol=1e-8) def test_gh13407(): # gh-13407 reported that the message produced by `scipy.optimize.toms748` # when `rtol < eps` is incorrect, and also that toms748 is unusual in # accepting `rtol` as low as eps while other solvers raise at 4*eps. Check # that the error message has been corrected and that `rtol=eps` can produce # a lower function value than `rtol=4*eps`. def f(x): return x**3 - 2*x - 5 xtol = 1e-300 eps = np.finfo(float).eps x1 = zeros.toms748(f, 1e-10, 1e10, xtol=xtol, rtol=1*eps) f1 = f(x1) x4 = zeros.toms748(f, 1e-10, 1e10, xtol=xtol, rtol=4*eps) f4 = f(x4) assert f1 < f4 # using old-style syntax to get exactly the same message message = fr"rtol too small \({eps/2:g} < {eps:g}\)" with pytest.raises(ValueError, match=message): zeros.toms748(f, 1e-10, 1e10, xtol=xtol, rtol=eps/2) def test_newton_complex_gh10103(): # gh-10103 reported a problem when `newton` is pass a Python complex x0, # no `fprime` (secant method), and no `x1` (`x1` must be constructed). # Check that this is resolved. def f(z): return z - 1 res = newton(f, 1+1j) assert_allclose(res, 1, atol=1e-12) res = root_scalar(f, x0=1+1j, x1=2+1.5j, method='secant') assert_allclose(res.root, 1, atol=1e-12) @pytest.mark.parametrize('method', all_methods) def test_maxiter_int_check_gh10236(method): # gh-10236 reported that the error message when `maxiter` is not an integer # was difficult to interpret. Check that this was resolved (by gh-10907). message = "'float' object cannot be interpreted as an integer" with pytest.raises(TypeError, match=message): method(f1, 0.0, 1.0, maxiter=72.45)