""" ltisys -- a collection of functions to convert linear time invariant systems from one representation to another. """ import numpy import numpy as np from numpy import (r_, eye, atleast_2d, poly, dot, asarray, prod, zeros, array, outer) from scipy import linalg from ._filter_design import tf2zpk, zpk2tf, normalize __all__ = ['tf2ss', 'abcd_normalize', 'ss2tf', 'zpk2ss', 'ss2zpk', 'cont2discrete'] def tf2ss(num, den): r"""Transfer function to state-space representation. Parameters ---------- num, den : array_like Sequences representing the coefficients of the numerator and denominator polynomials, in order of descending degree. The denominator needs to be at least as long as the numerator. Returns ------- A, B, C, D : ndarray State space representation of the system, in controller canonical form. Examples -------- Convert the transfer function: .. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1} >>> num = [1, 3, 3] >>> den = [1, 2, 1] to the state-space representation: .. math:: \dot{\textbf{x}}(t) = \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\ \textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) + \begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t) >>> from scipy.signal import tf2ss >>> A, B, C, D = tf2ss(num, den) >>> A array([[-2., -1.], [ 1., 0.]]) >>> B array([[ 1.], [ 0.]]) >>> C array([[ 1., 2.]]) >>> D array([[ 1.]]) """ # Controller canonical state-space representation. # if M+1 = len(num) and K+1 = len(den) then we must have M <= K # states are found by asserting that X(s) = U(s) / D(s) # then Y(s) = N(s) * X(s) # # A, B, C, and D follow quite naturally. # num, den = normalize(num, den) # Strips zeros, checks arrays nn = len(num.shape) if nn == 1: num = asarray([num], num.dtype) M = num.shape[1] K = len(den) if M > K: msg = "Improper transfer function. `num` is longer than `den`." raise ValueError(msg) if M == 0 or K == 0: # Null system return (array([], float), array([], float), array([], float), array([], float)) # pad numerator to have same number of columns has denominator num = np.hstack((np.zeros((num.shape[0], K - M), dtype=num.dtype), num)) if num.shape[-1] > 0: D = atleast_2d(num[:, 0]) else: # We don't assign it an empty array because this system # is not 'null'. It just doesn't have a non-zero D # matrix. Thus, it should have a non-zero shape so that # it can be operated on by functions like 'ss2tf' D = array([[0]], float) if K == 1: D = D.reshape(num.shape) return (zeros((1, 1)), zeros((1, D.shape[1])), zeros((D.shape[0], 1)), D) frow = -array([den[1:]]) A = r_[frow, eye(K - 2, K - 1)] B = eye(K - 1, 1) C = num[:, 1:] - outer(num[:, 0], den[1:]) D = D.reshape((C.shape[0], B.shape[1])) return A, B, C, D def _none_to_empty_2d(arg): if arg is None: return zeros((0, 0)) else: return arg def _atleast_2d_or_none(arg): if arg is not None: return atleast_2d(arg) def _shape_or_none(M): if M is not None: return M.shape else: return (None,) * 2 def _choice_not_none(*args): for arg in args: if arg is not None: return arg def _restore(M, shape): if M.shape == (0, 0): return zeros(shape) else: if M.shape != shape: raise ValueError("The input arrays have incompatible shapes.") return M def abcd_normalize(A=None, B=None, C=None, D=None): """Check state-space matrices and ensure they are 2-D. If enough information on the system is provided, that is, enough properly-shaped arrays are passed to the function, the missing ones are built from this information, ensuring the correct number of rows and columns. Otherwise a ValueError is raised. Parameters ---------- A, B, C, D : array_like, optional State-space matrices. All of them are None (missing) by default. See `ss2tf` for format. Returns ------- A, B, C, D : array Properly shaped state-space matrices. Raises ------ ValueError If not enough information on the system was provided. """ A, B, C, D = map(_atleast_2d_or_none, (A, B, C, D)) MA, NA = _shape_or_none(A) MB, NB = _shape_or_none(B) MC, NC = _shape_or_none(C) MD, ND = _shape_or_none(D) p = _choice_not_none(MA, MB, NC) q = _choice_not_none(NB, ND) r = _choice_not_none(MC, MD) if p is None or q is None or r is None: raise ValueError("Not enough information on the system.") A, B, C, D = map(_none_to_empty_2d, (A, B, C, D)) A = _restore(A, (p, p)) B = _restore(B, (p, q)) C = _restore(C, (r, p)) D = _restore(D, (r, q)) return A, B, C, D def ss2tf(A, B, C, D, input=0): r"""State-space to transfer function. A, B, C, D defines a linear state-space system with `p` inputs, `q` outputs, and `n` state variables. Parameters ---------- A : array_like State (or system) matrix of shape ``(n, n)`` B : array_like Input matrix of shape ``(n, p)`` C : array_like Output matrix of shape ``(q, n)`` D : array_like Feedthrough (or feedforward) matrix of shape ``(q, p)`` input : int, optional For multiple-input systems, the index of the input to use. Returns ------- num : 2-D ndarray Numerator(s) of the resulting transfer function(s). `num` has one row for each of the system's outputs. Each row is a sequence representation of the numerator polynomial. den : 1-D ndarray Denominator of the resulting transfer function(s). `den` is a sequence representation of the denominator polynomial. Examples -------- Convert the state-space representation: .. math:: \dot{\textbf{x}}(t) = \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\ \textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) + \begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t) >>> A = [[-2, -1], [1, 0]] >>> B = [[1], [0]] # 2-D column vector >>> C = [[1, 2]] # 2-D row vector >>> D = 1 to the transfer function: .. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1} >>> from scipy.signal import ss2tf >>> ss2tf(A, B, C, D) (array([[1., 3., 3.]]), array([ 1., 2., 1.])) """ # transfer function is C (sI - A)**(-1) B + D # Check consistency and make them all rank-2 arrays A, B, C, D = abcd_normalize(A, B, C, D) nout, nin = D.shape if input >= nin: raise ValueError("System does not have the input specified.") # make SIMO from possibly MIMO system. B = B[:, input:input + 1] D = D[:, input:input + 1] try: den = poly(A) except ValueError: den = 1 if (prod(B.shape, axis=0) == 0) and (prod(C.shape, axis=0) == 0): num = numpy.ravel(D) if (prod(D.shape, axis=0) == 0) and (prod(A.shape, axis=0) == 0): den = [] return num, den num_states = A.shape[0] type_test = A[:, 0] + B[:, 0] + C[0, :] + D + 0.0 num = numpy.empty((nout, num_states + 1), type_test.dtype) for k in range(nout): Ck = atleast_2d(C[k, :]) num[k] = poly(A - dot(B, Ck)) + (D[k] - 1) * den return num, den def zpk2ss(z, p, k): """Zero-pole-gain representation to state-space representation Parameters ---------- z, p : sequence Zeros and poles. k : float System gain. Returns ------- A, B, C, D : ndarray State space representation of the system, in controller canonical form. """ return tf2ss(*zpk2tf(z, p, k)) def ss2zpk(A, B, C, D, input=0): """State-space representation to zero-pole-gain representation. A, B, C, D defines a linear state-space system with `p` inputs, `q` outputs, and `n` state variables. Parameters ---------- A : array_like State (or system) matrix of shape ``(n, n)`` B : array_like Input matrix of shape ``(n, p)`` C : array_like Output matrix of shape ``(q, n)`` D : array_like Feedthrough (or feedforward) matrix of shape ``(q, p)`` input : int, optional For multiple-input systems, the index of the input to use. Returns ------- z, p : sequence Zeros and poles. k : float System gain. """ return tf2zpk(*ss2tf(A, B, C, D, input=input)) def cont2discrete(system, dt, method="zoh", alpha=None): """ Transform a continuous to a discrete state-space system. Parameters ---------- system : a tuple describing the system or an instance of `lti` The following gives the number of elements in the tuple and the interpretation: * 1: (instance of `lti`) * 2: (num, den) * 3: (zeros, poles, gain) * 4: (A, B, C, D) dt : float The discretization time step. method : str, optional Which method to use: * gbt: generalized bilinear transformation * bilinear: Tustin's approximation ("gbt" with alpha=0.5) * euler: Euler (or forward differencing) method ("gbt" with alpha=0) * backward_diff: Backwards differencing ("gbt" with alpha=1.0) * zoh: zero-order hold (default) * foh: first-order hold (*versionadded: 1.3.0*) * impulse: equivalent impulse response (*versionadded: 1.3.0*) alpha : float within [0, 1], optional The generalized bilinear transformation weighting parameter, which should only be specified with method="gbt", and is ignored otherwise Returns ------- sysd : tuple containing the discrete system Based on the input type, the output will be of the form * (num, den, dt) for transfer function input * (zeros, poles, gain, dt) for zeros-poles-gain input * (A, B, C, D, dt) for state-space system input Notes ----- By default, the routine uses a Zero-Order Hold (zoh) method to perform the transformation. Alternatively, a generalized bilinear transformation may be used, which includes the common Tustin's bilinear approximation, an Euler's method technique, or a backwards differencing technique. The Zero-Order Hold (zoh) method is based on [1]_, the generalized bilinear approximation is based on [2]_ and [3]_, the First-Order Hold (foh) method is based on [4]_. References ---------- .. [1] https://en.wikipedia.org/wiki/Discretization#Discretization_of_linear_state_space_models .. [2] http://techteach.no/publications/discretetime_signals_systems/discrete.pdf .. [3] G. Zhang, X. Chen, and T. Chen, Digital redesign via the generalized bilinear transformation, Int. J. Control, vol. 82, no. 4, pp. 741-754, 2009. (https://www.mypolyuweb.hk/~magzhang/Research/ZCC09_IJC.pdf) .. [4] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control of dynamic systems, 3rd ed. Menlo Park, Calif: Addison-Wesley, pp. 204-206, 1998. Examples -------- We can transform a continuous state-space system to a discrete one: >>> import numpy as np >>> import matplotlib.pyplot as plt >>> from scipy.signal import cont2discrete, lti, dlti, dstep Define a continuous state-space system. >>> A = np.array([[0, 1],[-10., -3]]) >>> B = np.array([[0],[10.]]) >>> C = np.array([[1., 0]]) >>> D = np.array([[0.]]) >>> l_system = lti(A, B, C, D) >>> t, x = l_system.step(T=np.linspace(0, 5, 100)) >>> fig, ax = plt.subplots() >>> ax.plot(t, x, label='Continuous', linewidth=3) Transform it to a discrete state-space system using several methods. >>> dt = 0.1 >>> for method in ['zoh', 'bilinear', 'euler', 'backward_diff', 'foh', 'impulse']: ... d_system = cont2discrete((A, B, C, D), dt, method=method) ... s, x_d = dstep(d_system) ... ax.step(s, np.squeeze(x_d), label=method, where='post') >>> ax.axis([t[0], t[-1], x[0], 1.4]) >>> ax.legend(loc='best') >>> fig.tight_layout() >>> plt.show() """ if len(system) == 1: return system.to_discrete() if len(system) == 2: sysd = cont2discrete(tf2ss(system[0], system[1]), dt, method=method, alpha=alpha) return ss2tf(sysd[0], sysd[1], sysd[2], sysd[3]) + (dt,) elif len(system) == 3: sysd = cont2discrete(zpk2ss(system[0], system[1], system[2]), dt, method=method, alpha=alpha) return ss2zpk(sysd[0], sysd[1], sysd[2], sysd[3]) + (dt,) elif len(system) == 4: a, b, c, d = system else: raise ValueError("First argument must either be a tuple of 2 (tf), " "3 (zpk), or 4 (ss) arrays.") if method == 'gbt': if alpha is None: raise ValueError("Alpha parameter must be specified for the " "generalized bilinear transform (gbt) method") elif alpha < 0 or alpha > 1: raise ValueError("Alpha parameter must be within the interval " "[0,1] for the gbt method") if method == 'gbt': # This parameter is used repeatedly - compute once here ima = np.eye(a.shape[0]) - alpha*dt*a ad = linalg.solve(ima, np.eye(a.shape[0]) + (1.0-alpha)*dt*a) bd = linalg.solve(ima, dt*b) # Similarly solve for the output equation matrices cd = linalg.solve(ima.transpose(), c.transpose()) cd = cd.transpose() dd = d + alpha*np.dot(c, bd) elif method == 'bilinear' or method == 'tustin': return cont2discrete(system, dt, method="gbt", alpha=0.5) elif method == 'euler' or method == 'forward_diff': return cont2discrete(system, dt, method="gbt", alpha=0.0) elif method == 'backward_diff': return cont2discrete(system, dt, method="gbt", alpha=1.0) elif method == 'zoh': # Build an exponential matrix em_upper = np.hstack((a, b)) # Need to stack zeros under the a and b matrices em_lower = np.hstack((np.zeros((b.shape[1], a.shape[0])), np.zeros((b.shape[1], b.shape[1])))) em = np.vstack((em_upper, em_lower)) ms = linalg.expm(dt * em) # Dispose of the lower rows ms = ms[:a.shape[0], :] ad = ms[:, 0:a.shape[1]] bd = ms[:, a.shape[1]:] cd = c dd = d elif method == 'foh': # Size parameters for convenience n = a.shape[0] m = b.shape[1] # Build an exponential matrix similar to 'zoh' method em_upper = linalg.block_diag(np.block([a, b]) * dt, np.eye(m)) em_lower = zeros((m, n + 2 * m)) em = np.block([[em_upper], [em_lower]]) ms = linalg.expm(em) # Get the three blocks from upper rows ms11 = ms[:n, 0:n] ms12 = ms[:n, n:n + m] ms13 = ms[:n, n + m:] ad = ms11 bd = ms12 - ms13 + ms11 @ ms13 cd = c dd = d + c @ ms13 elif method == 'impulse': if not np.allclose(d, 0): raise ValueError("Impulse method is only applicable" "to strictly proper systems") ad = linalg.expm(a * dt) bd = ad @ b * dt cd = c dd = c @ b * dt else: raise ValueError("Unknown transformation method '%s'" % method) return ad, bd, cd, dd, dt