""" Utility functions for sparse matrix module """ import sys from typing import Any, Literal, Optional, Union import operator import numpy as np from math import prod import scipy.sparse as sp from scipy._lib._util import np_long, np_ulong __all__ = ['upcast', 'getdtype', 'getdata', 'isscalarlike', 'isintlike', 'isshape', 'issequence', 'isdense', 'ismatrix', 'get_sum_dtype'] supported_dtypes = [np.bool_, np.byte, np.ubyte, np.short, np.ushort, np.intc, np.uintc, np_long, np_ulong, np.longlong, np.ulonglong, np.float32, np.float64, np.longdouble, np.complex64, np.complex128, np.clongdouble] _upcast_memo = {} def upcast(*args): """Returns the nearest supported sparse dtype for the combination of one or more types. upcast(t0, t1, ..., tn) -> T where T is a supported dtype Examples -------- >>> from scipy.sparse._sputils import upcast >>> upcast('int32') >>> upcast('bool') >>> upcast('int32','float32') >>> upcast('bool',complex,float) """ t = _upcast_memo.get(hash(args)) if t is not None: return t upcast = np.result_type(*args) for t in supported_dtypes: if np.can_cast(upcast, t): _upcast_memo[hash(args)] = t return t raise TypeError(f'no supported conversion for types: {args!r}') def upcast_char(*args): """Same as `upcast` but taking dtype.char as input (faster).""" t = _upcast_memo.get(args) if t is not None: return t t = upcast(*map(np.dtype, args)) _upcast_memo[args] = t return t def upcast_scalar(dtype, scalar): """Determine data type for binary operation between an array of type `dtype` and a scalar. """ return (np.array([0], dtype=dtype) * scalar).dtype def downcast_intp_index(arr): """ Down-cast index array to np.intp dtype if it is of a larger dtype. Raise an error if the array contains a value that is too large for intp. """ if arr.dtype.itemsize > np.dtype(np.intp).itemsize: if arr.size == 0: return arr.astype(np.intp) maxval = arr.max() minval = arr.min() if maxval > np.iinfo(np.intp).max or minval < np.iinfo(np.intp).min: raise ValueError("Cannot deal with arrays with indices larger " "than the machine maximum address size " "(e.g. 64-bit indices on 32-bit machine).") return arr.astype(np.intp) return arr def to_native(A): """ Ensure that the data type of the NumPy array `A` has native byte order. `A` must be a NumPy array. If the data type of `A` does not have native byte order, a copy of `A` with a native byte order is returned. Otherwise `A` is returned. """ dt = A.dtype if dt.isnative: # Don't call `asarray()` if A is already native, to avoid unnecessarily # creating a view of the input array. return A return np.asarray(A, dtype=dt.newbyteorder('native')) def getdtype(dtype, a=None, default=None): """Function used to simplify argument processing. If 'dtype' is not specified (is None), returns a.dtype; otherwise returns a np.dtype object created from the specified dtype argument. If 'dtype' and 'a' are both None, construct a data type out of the 'default' parameter. Furthermore, 'dtype' must be in 'allowed' set. """ # TODO is this really what we want? if dtype is None: try: newdtype = a.dtype except AttributeError as e: if default is not None: newdtype = np.dtype(default) else: raise TypeError("could not interpret data type") from e else: newdtype = np.dtype(dtype) if newdtype == np.object_: raise ValueError( "object dtype is not supported by sparse matrices" ) return newdtype def getdata(obj, dtype=None, copy=False) -> np.ndarray: """ This is a wrapper of `np.array(obj, dtype=dtype, copy=copy)` that will generate a warning if the result is an object array. """ data = np.array(obj, dtype=dtype, copy=copy) # Defer to getdtype for checking that the dtype is OK. # This is called for the validation only; we don't need the return value. getdtype(data.dtype) return data def get_index_dtype(arrays=(), maxval=None, check_contents=False): """ Based on input (integer) arrays `a`, determine a suitable index data type that can hold the data in the arrays. Parameters ---------- arrays : tuple of array_like Input arrays whose types/contents to check maxval : float, optional Maximum value needed check_contents : bool, optional Whether to check the values in the arrays and not just their types. Default: False (check only the types) Returns ------- dtype : dtype Suitable index data type (int32 or int64) """ int32min = np.int32(np.iinfo(np.int32).min) int32max = np.int32(np.iinfo(np.int32).max) # not using intc directly due to misinteractions with pythran dtype = np.int32 if np.intc().itemsize == 4 else np.int64 if maxval is not None: maxval = np.int64(maxval) if maxval > int32max: dtype = np.int64 if isinstance(arrays, np.ndarray): arrays = (arrays,) for arr in arrays: arr = np.asarray(arr) if not np.can_cast(arr.dtype, np.int32): if check_contents: if arr.size == 0: # a bigger type not needed continue elif np.issubdtype(arr.dtype, np.integer): maxval = arr.max() minval = arr.min() if minval >= int32min and maxval <= int32max: # a bigger type not needed continue dtype = np.int64 break return dtype def get_sum_dtype(dtype: np.dtype) -> np.dtype: """Mimic numpy's casting for np.sum""" if dtype.kind == 'u' and np.can_cast(dtype, np.uint): return np.uint if np.can_cast(dtype, np.int_): return np.int_ return dtype def isscalarlike(x) -> bool: """Is x either a scalar, an array scalar, or a 0-dim array?""" return np.isscalar(x) or (isdense(x) and x.ndim == 0) def isintlike(x) -> bool: """Is x appropriate as an index into a sparse matrix? Returns True if it can be cast safely to a machine int. """ # Fast-path check to eliminate non-scalar values. operator.index would # catch this case too, but the exception catching is slow. if np.ndim(x) != 0: return False try: operator.index(x) except (TypeError, ValueError): try: loose_int = bool(int(x) == x) except (TypeError, ValueError): return False if loose_int: msg = "Inexact indices into sparse matrices are not allowed" raise ValueError(msg) return loose_int return True def isshape(x, nonneg=False, *, allow_1d=False) -> bool: """Is x a valid tuple of dimensions? If nonneg, also checks that the dimensions are non-negative. If allow_1d, shapes of length 1 or 2 are allowed. """ ndim = len(x) if ndim != 2 and not (allow_1d and ndim == 1): return False for d in x: if not isintlike(d): return False if nonneg and d < 0: return False return True def issequence(t) -> bool: return ((isinstance(t, (list, tuple)) and (len(t) == 0 or np.isscalar(t[0]))) or (isinstance(t, np.ndarray) and (t.ndim == 1))) def ismatrix(t) -> bool: return ((isinstance(t, (list, tuple)) and len(t) > 0 and issequence(t[0])) or (isinstance(t, np.ndarray) and t.ndim == 2)) def isdense(x) -> bool: return isinstance(x, np.ndarray) def validateaxis(axis) -> None: if axis is None: return axis_type = type(axis) # In NumPy, you can pass in tuples for 'axis', but they are # not very useful for sparse matrices given their limited # dimensions, so let's make it explicit that they are not # allowed to be passed in if axis_type == tuple: raise TypeError("Tuples are not accepted for the 'axis' parameter. " "Please pass in one of the following: " "{-2, -1, 0, 1, None}.") # If not a tuple, check that the provided axis is actually # an integer and raise a TypeError similar to NumPy's if not np.issubdtype(np.dtype(axis_type), np.integer): raise TypeError(f"axis must be an integer, not {axis_type.__name__}") if not (-2 <= axis <= 1): raise ValueError("axis out of range") def check_shape(args, current_shape=None, *, allow_1d=False) -> tuple[int, ...]: """Imitate numpy.matrix handling of shape arguments Parameters ---------- args : array_like Data structures providing information about the shape of the sparse array. current_shape : tuple, optional The current shape of the sparse array or matrix. If None (default), the current shape will be inferred from args. allow_1d : bool, optional If True, then 1-D or 2-D arrays are accepted. If False (default), then only 2-D arrays are accepted and an error is raised otherwise. Returns ------- new_shape: tuple The new shape after validation. """ if len(args) == 0: raise TypeError("function missing 1 required positional argument: " "'shape'") if len(args) == 1: try: shape_iter = iter(args[0]) except TypeError: new_shape = (operator.index(args[0]), ) else: new_shape = tuple(operator.index(arg) for arg in shape_iter) else: new_shape = tuple(operator.index(arg) for arg in args) if current_shape is None: if allow_1d: if len(new_shape) not in (1, 2): raise ValueError('shape must be a 1- or 2-tuple of positive ' 'integers') elif len(new_shape) != 2: raise ValueError('shape must be a 2-tuple of positive integers') if any(d < 0 for d in new_shape): raise ValueError("'shape' elements cannot be negative") else: # Check the current size only if needed current_size = prod(current_shape) # Check for negatives negative_indexes = [i for i, x in enumerate(new_shape) if x < 0] if not negative_indexes: new_size = prod(new_shape) if new_size != current_size: raise ValueError('cannot reshape array of size {} into shape {}' .format(current_size, new_shape)) elif len(negative_indexes) == 1: skip = negative_indexes[0] specified = prod(new_shape[:skip] + new_shape[skip+1:]) unspecified, remainder = divmod(current_size, specified) if remainder != 0: err_shape = tuple('newshape' if x < 0 else x for x in new_shape) raise ValueError('cannot reshape array of size {} into shape {}' ''.format(current_size, err_shape)) new_shape = new_shape[:skip] + (unspecified,) + new_shape[skip+1:] else: raise ValueError('can only specify one unknown dimension') if len(new_shape) != 2 and not (allow_1d and len(new_shape) == 1): raise ValueError('matrix shape must be two-dimensional') return new_shape def check_reshape_kwargs(kwargs): """Unpack keyword arguments for reshape function. This is useful because keyword arguments after star arguments are not allowed in Python 2, but star keyword arguments are. This function unpacks 'order' and 'copy' from the star keyword arguments (with defaults) and throws an error for any remaining. """ order = kwargs.pop('order', 'C') copy = kwargs.pop('copy', False) if kwargs: # Some unused kwargs remain raise TypeError('reshape() got unexpected keywords arguments: {}' .format(', '.join(kwargs.keys()))) return order, copy def is_pydata_spmatrix(m) -> bool: """ Check whether object is pydata/sparse matrix, avoiding importing the module. """ base_cls = getattr(sys.modules.get('sparse'), 'SparseArray', None) return base_cls is not None and isinstance(m, base_cls) def convert_pydata_sparse_to_scipy( arg: Any, target_format: Optional[Literal["csc", "csr"]] = None ) -> Union[Any, "sp.spmatrix"]: """ Convert a pydata/sparse array to scipy sparse matrix, pass through anything else. """ if is_pydata_spmatrix(arg): arg = arg.to_scipy_sparse() if target_format is not None: arg = arg.asformat(target_format) elif arg.format not in ("csc", "csr"): arg = arg.tocsc() return arg ############################################################################### # Wrappers for NumPy types that are deprecated # Numpy versions of these functions raise deprecation warnings, the # ones below do not. def matrix(*args, **kwargs): return np.array(*args, **kwargs).view(np.matrix) def asmatrix(data, dtype=None): if isinstance(data, np.matrix) and (dtype is None or data.dtype == dtype): return data return np.asarray(data, dtype=dtype).view(np.matrix) ############################################################################### def _todata(s) -> np.ndarray: """Access nonzero values, possibly after summing duplicates. Parameters ---------- s : sparse array Input sparse array. Returns ------- data: ndarray Nonzero values of the array, with shape (s.nnz,) """ if isinstance(s, sp._data._data_matrix): return s._deduped_data() if isinstance(s, sp.dok_array): return np.fromiter(s.values(), dtype=s.dtype, count=s.nnz) if isinstance(s, sp.lil_array): data = np.empty(s.nnz, dtype=s.dtype) sp._csparsetools.lil_flatten_to_array(s.data, data) return data return s.tocoo()._deduped_data()