import pytest import numpy as np from numpy.testing import assert_allclose from pytest import raises as assert_raises from scipy import sparse from scipy.sparse import csgraph from scipy._lib._util import np_long, np_ulong def check_int_type(mat): return np.issubdtype(mat.dtype, np.signedinteger) or np.issubdtype( mat.dtype, np_ulong ) def test_laplacian_value_error(): for t in int, float, complex: for m in ([1, 1], [[[1]]], [[1, 2, 3], [4, 5, 6]], [[1, 2], [3, 4], [5, 5]]): A = np.array(m, dtype=t) assert_raises(ValueError, csgraph.laplacian, A) def _explicit_laplacian(x, normed=False): if sparse.issparse(x): x = x.toarray() x = np.asarray(x) y = -1.0 * x for j in range(y.shape[0]): y[j,j] = x[j,j+1:].sum() + x[j,:j].sum() if normed: d = np.diag(y).copy() d[d == 0] = 1.0 y /= d[:,None]**.5 y /= d[None,:]**.5 return y def _check_symmetric_graph_laplacian(mat, normed, copy=True): if not hasattr(mat, 'shape'): mat = eval(mat, dict(np=np, sparse=sparse)) if sparse.issparse(mat): sp_mat = mat mat = sp_mat.toarray() else: sp_mat = sparse.csr_matrix(mat) mat_copy = np.copy(mat) sp_mat_copy = sparse.csr_matrix(sp_mat, copy=True) n_nodes = mat.shape[0] explicit_laplacian = _explicit_laplacian(mat, normed=normed) laplacian = csgraph.laplacian(mat, normed=normed, copy=copy) sp_laplacian = csgraph.laplacian(sp_mat, normed=normed, copy=copy) if copy: assert_allclose(mat, mat_copy) _assert_allclose_sparse(sp_mat, sp_mat_copy) else: if not (normed and check_int_type(mat)): assert_allclose(laplacian, mat) if sp_mat.format == 'coo': _assert_allclose_sparse(sp_laplacian, sp_mat) assert_allclose(laplacian, sp_laplacian.toarray()) for tested in [laplacian, sp_laplacian.toarray()]: if not normed: assert_allclose(tested.sum(axis=0), np.zeros(n_nodes)) assert_allclose(tested.T, tested) assert_allclose(tested, explicit_laplacian) def test_symmetric_graph_laplacian(): symmetric_mats = ( 'np.arange(10) * np.arange(10)[:, np.newaxis]', 'np.ones((7, 7))', 'np.eye(19)', 'sparse.diags([1, 1], [-1, 1], shape=(4, 4))', 'sparse.diags([1, 1], [-1, 1], shape=(4, 4)).toarray()', 'sparse.diags([1, 1], [-1, 1], shape=(4, 4)).todense()', 'np.vander(np.arange(4)) + np.vander(np.arange(4)).T' ) for mat in symmetric_mats: for normed in True, False: for copy in True, False: _check_symmetric_graph_laplacian(mat, normed, copy) def _assert_allclose_sparse(a, b, **kwargs): # helper function that can deal with sparse matrices if sparse.issparse(a): a = a.toarray() if sparse.issparse(b): b = b.toarray() assert_allclose(a, b, **kwargs) def _check_laplacian_dtype_none( A, desired_L, desired_d, normed, use_out_degree, copy, dtype, arr_type ): mat = arr_type(A, dtype=dtype) L, d = csgraph.laplacian( mat, normed=normed, return_diag=True, use_out_degree=use_out_degree, copy=copy, dtype=None, ) if normed and check_int_type(mat): assert L.dtype == np.float64 assert d.dtype == np.float64 _assert_allclose_sparse(L, desired_L, atol=1e-12) _assert_allclose_sparse(d, desired_d, atol=1e-12) else: assert L.dtype == dtype assert d.dtype == dtype desired_L = np.asarray(desired_L).astype(dtype) desired_d = np.asarray(desired_d).astype(dtype) _assert_allclose_sparse(L, desired_L, atol=1e-12) _assert_allclose_sparse(d, desired_d, atol=1e-12) if not copy: if not (normed and check_int_type(mat)): if type(mat) is np.ndarray: assert_allclose(L, mat) elif mat.format == "coo": _assert_allclose_sparse(L, mat) def _check_laplacian_dtype( A, desired_L, desired_d, normed, use_out_degree, copy, dtype, arr_type ): mat = arr_type(A, dtype=dtype) L, d = csgraph.laplacian( mat, normed=normed, return_diag=True, use_out_degree=use_out_degree, copy=copy, dtype=dtype, ) assert L.dtype == dtype assert d.dtype == dtype desired_L = np.asarray(desired_L).astype(dtype) desired_d = np.asarray(desired_d).astype(dtype) _assert_allclose_sparse(L, desired_L, atol=1e-12) _assert_allclose_sparse(d, desired_d, atol=1e-12) if not copy: if not (normed and check_int_type(mat)): if type(mat) is np.ndarray: assert_allclose(L, mat) elif mat.format == 'coo': _assert_allclose_sparse(L, mat) INT_DTYPES = {np.intc, np_long, np.longlong} REAL_DTYPES = {np.float32, np.float64, np.longdouble} COMPLEX_DTYPES = {np.complex64, np.complex128, np.clongdouble} # use sorted list to ensure fixed order of tests DTYPES = sorted(INT_DTYPES ^ REAL_DTYPES ^ COMPLEX_DTYPES, key=str) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("arr_type", [np.array, sparse.csr_matrix, sparse.coo_matrix, sparse.csr_array, sparse.coo_array]) @pytest.mark.parametrize("copy", [True, False]) @pytest.mark.parametrize("normed", [True, False]) @pytest.mark.parametrize("use_out_degree", [True, False]) def test_asymmetric_laplacian(use_out_degree, normed, copy, dtype, arr_type): # adjacency matrix A = [[0, 1, 0], [4, 2, 0], [0, 0, 0]] A = arr_type(np.array(A), dtype=dtype) A_copy = A.copy() if not normed and use_out_degree: # Laplacian matrix using out-degree L = [[1, -1, 0], [-4, 4, 0], [0, 0, 0]] d = [1, 4, 0] if normed and use_out_degree: # normalized Laplacian matrix using out-degree L = [[1, -0.5, 0], [-2, 1, 0], [0, 0, 0]] d = [1, 2, 1] if not normed and not use_out_degree: # Laplacian matrix using in-degree L = [[4, -1, 0], [-4, 1, 0], [0, 0, 0]] d = [4, 1, 0] if normed and not use_out_degree: # normalized Laplacian matrix using in-degree L = [[1, -0.5, 0], [-2, 1, 0], [0, 0, 0]] d = [2, 1, 1] _check_laplacian_dtype_none( A, L, d, normed=normed, use_out_degree=use_out_degree, copy=copy, dtype=dtype, arr_type=arr_type, ) _check_laplacian_dtype( A_copy, L, d, normed=normed, use_out_degree=use_out_degree, copy=copy, dtype=dtype, arr_type=arr_type, ) @pytest.mark.parametrize("fmt", ['csr', 'csc', 'coo', 'lil', 'dok', 'dia', 'bsr']) @pytest.mark.parametrize("normed", [True, False]) @pytest.mark.parametrize("copy", [True, False]) def test_sparse_formats(fmt, normed, copy): mat = sparse.diags([1, 1], [-1, 1], shape=(4, 4), format=fmt) _check_symmetric_graph_laplacian(mat, normed, copy) @pytest.mark.parametrize( "arr_type", [np.asarray, sparse.csr_matrix, sparse.coo_matrix, sparse.csr_array, sparse.coo_array] ) @pytest.mark.parametrize("form", ["array", "function", "lo"]) def test_laplacian_symmetrized(arr_type, form): # adjacency matrix n = 3 mat = arr_type(np.arange(n * n).reshape(n, n)) L_in, d_in = csgraph.laplacian( mat, return_diag=True, form=form, ) L_out, d_out = csgraph.laplacian( mat, return_diag=True, use_out_degree=True, form=form, ) Ls, ds = csgraph.laplacian( mat, return_diag=True, symmetrized=True, form=form, ) Ls_normed, ds_normed = csgraph.laplacian( mat, return_diag=True, symmetrized=True, normed=True, form=form, ) mat += mat.T Lss, dss = csgraph.laplacian(mat, return_diag=True, form=form) Lss_normed, dss_normed = csgraph.laplacian( mat, return_diag=True, normed=True, form=form, ) assert_allclose(ds, d_in + d_out) assert_allclose(ds, dss) assert_allclose(ds_normed, dss_normed) d = {} for L in ["L_in", "L_out", "Ls", "Ls_normed", "Lss", "Lss_normed"]: if form == "array": d[L] = eval(L) else: d[L] = eval(L)(np.eye(n, dtype=mat.dtype)) _assert_allclose_sparse(d["Ls"], d["L_in"] + d["L_out"].T) _assert_allclose_sparse(d["Ls"], d["Lss"]) _assert_allclose_sparse(d["Ls_normed"], d["Lss_normed"]) @pytest.mark.parametrize( "arr_type", [np.asarray, sparse.csr_matrix, sparse.coo_matrix, sparse.csr_array, sparse.coo_array] ) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("normed", [True, False]) @pytest.mark.parametrize("symmetrized", [True, False]) @pytest.mark.parametrize("use_out_degree", [True, False]) @pytest.mark.parametrize("form", ["function", "lo"]) def test_format(dtype, arr_type, normed, symmetrized, use_out_degree, form): n = 3 mat = [[0, 1, 0], [4, 2, 0], [0, 0, 0]] mat = arr_type(np.array(mat), dtype=dtype) Lo, do = csgraph.laplacian( mat, return_diag=True, normed=normed, symmetrized=symmetrized, use_out_degree=use_out_degree, dtype=dtype, ) La, da = csgraph.laplacian( mat, return_diag=True, normed=normed, symmetrized=symmetrized, use_out_degree=use_out_degree, dtype=dtype, form="array", ) assert_allclose(do, da) _assert_allclose_sparse(Lo, La) L, d = csgraph.laplacian( mat, return_diag=True, normed=normed, symmetrized=symmetrized, use_out_degree=use_out_degree, dtype=dtype, form=form, ) assert_allclose(d, do) assert d.dtype == dtype Lm = L(np.eye(n, dtype=mat.dtype)).astype(dtype) _assert_allclose_sparse(Lm, Lo, rtol=2e-7, atol=2e-7) x = np.arange(6).reshape(3, 2) if not (normed and dtype in INT_DTYPES): assert_allclose(L(x), Lo @ x) else: # Normalized Lo is casted to integer, but L() is not pass def test_format_error_message(): with pytest.raises(ValueError, match="Invalid form: 'toto'"): _ = csgraph.laplacian(np.eye(1), form='toto')