import numpy as np from numpy.testing import (assert_equal, assert_almost_equal, assert_allclose) from scipy.special import logit, expit, log_expit class TestLogit: def check_logit_out(self, dtype, expected): a = np.linspace(0, 1, 10) a = np.array(a, dtype=dtype) with np.errstate(divide='ignore'): actual = logit(a) assert_almost_equal(actual, expected) assert_equal(actual.dtype, np.dtype(dtype)) def test_float32(self): expected = np.array([-np.inf, -2.07944155, -1.25276291, -0.69314718, -0.22314353, 0.22314365, 0.6931473, 1.25276303, 2.07944155, np.inf], dtype=np.float32) self.check_logit_out('f4', expected) def test_float64(self): expected = np.array([-np.inf, -2.07944154, -1.25276297, -0.69314718, -0.22314355, 0.22314355, 0.69314718, 1.25276297, 2.07944154, np.inf]) self.check_logit_out('f8', expected) def test_nan(self): expected = np.array([np.nan]*4) with np.errstate(invalid='ignore'): actual = logit(np.array([-3., -2., 2., 3.])) assert_equal(expected, actual) class TestExpit: def check_expit_out(self, dtype, expected): a = np.linspace(-4, 4, 10) a = np.array(a, dtype=dtype) actual = expit(a) assert_almost_equal(actual, expected) assert_equal(actual.dtype, np.dtype(dtype)) def test_float32(self): expected = np.array([0.01798621, 0.04265125, 0.09777259, 0.20860852, 0.39068246, 0.60931754, 0.79139149, 0.9022274, 0.95734876, 0.98201376], dtype=np.float32) self.check_expit_out('f4', expected) def test_float64(self): expected = np.array([0.01798621, 0.04265125, 0.0977726, 0.20860853, 0.39068246, 0.60931754, 0.79139147, 0.9022274, 0.95734875, 0.98201379]) self.check_expit_out('f8', expected) def test_large(self): for dtype in (np.float32, np.float64, np.longdouble): for n in (88, 89, 709, 710, 11356, 11357): n = np.array(n, dtype=dtype) assert_allclose(expit(n), 1.0, atol=1e-20) assert_allclose(expit(-n), 0.0, atol=1e-20) assert_equal(expit(n).dtype, dtype) assert_equal(expit(-n).dtype, dtype) class TestLogExpit: def test_large_negative(self): x = np.array([-10000.0, -750.0, -500.0, -35.0]) y = log_expit(x) assert_equal(y, x) def test_large_positive(self): x = np.array([750.0, 1000.0, 10000.0]) y = log_expit(x) # y will contain -0.0, and -0.0 is used in the expected value, # but assert_equal does not check the sign of zeros, and I don't # think the sign is an essential part of the test (i.e. it would # probably be OK if log_expit(1000) returned 0.0 instead of -0.0). assert_equal(y, np.array([-0.0, -0.0, -0.0])) def test_basic_float64(self): x = np.array([-32, -20, -10, -3, -1, -0.1, -1e-9, 0, 1e-9, 0.1, 1, 10, 100, 500, 710, 725, 735]) y = log_expit(x) # # Expected values were computed with mpmath: # # import mpmath # # mpmath.mp.dps = 100 # # def mp_log_expit(x): # return -mpmath.log1p(mpmath.exp(-x)) # # expected = [float(mp_log_expit(t)) for t in x] # expected = [-32.000000000000014, -20.000000002061153, -10.000045398899218, -3.048587351573742, -1.3132616875182228, -0.7443966600735709, -0.6931471810599453, -0.6931471805599453, -0.6931471800599454, -0.6443966600735709, -0.3132616875182228, -4.539889921686465e-05, -3.720075976020836e-44, -7.124576406741286e-218, -4.47628622567513e-309, -1.36930634e-315, -6.217e-320] # When tested locally, only one value in y was not exactly equal to # expected. That was for x=1, and the y value differed from the # expected by 1 ULP. For this test, however, I'll use rtol=1e-15. assert_allclose(y, expected, rtol=1e-15) def test_basic_float32(self): x = np.array([-32, -20, -10, -3, -1, -0.1, -1e-9, 0, 1e-9, 0.1, 1, 10, 100], dtype=np.float32) y = log_expit(x) # # Expected values were computed with mpmath: # # import mpmath # # mpmath.mp.dps = 100 # # def mp_log_expit(x): # return -mpmath.log1p(mpmath.exp(-x)) # # expected = [np.float32(mp_log_expit(t)) for t in x] # expected = np.array([-32.0, -20.0, -10.000046, -3.0485873, -1.3132616, -0.7443967, -0.6931472, -0.6931472, -0.6931472, -0.64439666, -0.3132617, -4.5398898e-05, -3.8e-44], dtype=np.float32) assert_allclose(y, expected, rtol=5e-7)