# # Tests of spherical Bessel functions. # import numpy as np from numpy.testing import (assert_almost_equal, assert_allclose, assert_array_almost_equal, suppress_warnings) import pytest from numpy import sin, cos, sinh, cosh, exp, inf, nan, r_, pi from scipy.special import spherical_jn, spherical_yn, spherical_in, spherical_kn from scipy.integrate import quad class TestSphericalJn: def test_spherical_jn_exact(self): # https://dlmf.nist.gov/10.49.E3 # Note: exact expression is numerically stable only for small # n or z >> n. x = np.array([0.12, 1.23, 12.34, 123.45, 1234.5]) assert_allclose(spherical_jn(2, x), (-1/x + 3/x**3)*sin(x) - 3/x**2*cos(x)) def test_spherical_jn_recurrence_complex(self): # https://dlmf.nist.gov/10.51.E1 n = np.array([1, 2, 3, 7, 12]) x = 1.1 + 1.5j assert_allclose(spherical_jn(n - 1, x) + spherical_jn(n + 1, x), (2*n + 1)/x*spherical_jn(n, x)) def test_spherical_jn_recurrence_real(self): # https://dlmf.nist.gov/10.51.E1 n = np.array([1, 2, 3, 7, 12]) x = 0.12 assert_allclose(spherical_jn(n - 1, x) + spherical_jn(n + 1,x), (2*n + 1)/x*spherical_jn(n, x)) def test_spherical_jn_inf_real(self): # https://dlmf.nist.gov/10.52.E3 n = 6 x = np.array([-inf, inf]) assert_allclose(spherical_jn(n, x), np.array([0, 0])) def test_spherical_jn_inf_complex(self): # https://dlmf.nist.gov/10.52.E3 n = 7 x = np.array([-inf + 0j, inf + 0j, inf*(1+1j)]) with suppress_warnings() as sup: sup.filter(RuntimeWarning, "invalid value encountered in multiply") assert_allclose(spherical_jn(n, x), np.array([0, 0, inf*(1+1j)])) def test_spherical_jn_large_arg_1(self): # https://github.com/scipy/scipy/issues/2165 # Reference value computed using mpmath, via # besselj(n + mpf(1)/2, z)*sqrt(pi/(2*z)) assert_allclose(spherical_jn(2, 3350.507), -0.00029846226538040747) def test_spherical_jn_large_arg_2(self): # https://github.com/scipy/scipy/issues/1641 # Reference value computed using mpmath, via # besselj(n + mpf(1)/2, z)*sqrt(pi/(2*z)) assert_allclose(spherical_jn(2, 10000), 3.0590002633029811e-05) def test_spherical_jn_at_zero(self): # https://dlmf.nist.gov/10.52.E1 # But note that n = 0 is a special case: j0 = sin(x)/x -> 1 n = np.array([0, 1, 2, 5, 10, 100]) x = 0 assert_allclose(spherical_jn(n, x), np.array([1, 0, 0, 0, 0, 0])) class TestSphericalYn: def test_spherical_yn_exact(self): # https://dlmf.nist.gov/10.49.E5 # Note: exact expression is numerically stable only for small # n or z >> n. x = np.array([0.12, 1.23, 12.34, 123.45, 1234.5]) assert_allclose(spherical_yn(2, x), (1/x - 3/x**3)*cos(x) - 3/x**2*sin(x)) def test_spherical_yn_recurrence_real(self): # https://dlmf.nist.gov/10.51.E1 n = np.array([1, 2, 3, 7, 12]) x = 0.12 assert_allclose(spherical_yn(n - 1, x) + spherical_yn(n + 1,x), (2*n + 1)/x*spherical_yn(n, x)) def test_spherical_yn_recurrence_complex(self): # https://dlmf.nist.gov/10.51.E1 n = np.array([1, 2, 3, 7, 12]) x = 1.1 + 1.5j assert_allclose(spherical_yn(n - 1, x) + spherical_yn(n + 1, x), (2*n + 1)/x*spherical_yn(n, x)) def test_spherical_yn_inf_real(self): # https://dlmf.nist.gov/10.52.E3 n = 6 x = np.array([-inf, inf]) assert_allclose(spherical_yn(n, x), np.array([0, 0])) def test_spherical_yn_inf_complex(self): # https://dlmf.nist.gov/10.52.E3 n = 7 x = np.array([-inf + 0j, inf + 0j, inf*(1+1j)]) with suppress_warnings() as sup: sup.filter(RuntimeWarning, "invalid value encountered in multiply") assert_allclose(spherical_yn(n, x), np.array([0, 0, inf*(1+1j)])) def test_spherical_yn_at_zero(self): # https://dlmf.nist.gov/10.52.E2 n = np.array([0, 1, 2, 5, 10, 100]) x = 0 assert_allclose(spherical_yn(n, x), np.full(n.shape, -inf)) def test_spherical_yn_at_zero_complex(self): # Consistently with numpy: # >>> -np.cos(0)/0 # -inf # >>> -np.cos(0+0j)/(0+0j) # (-inf + nan*j) n = np.array([0, 1, 2, 5, 10, 100]) x = 0 + 0j assert_allclose(spherical_yn(n, x), np.full(n.shape, nan)) class TestSphericalJnYnCrossProduct: def test_spherical_jn_yn_cross_product_1(self): # https://dlmf.nist.gov/10.50.E3 n = np.array([1, 5, 8]) x = np.array([0.1, 1, 10]) left = (spherical_jn(n + 1, x) * spherical_yn(n, x) - spherical_jn(n, x) * spherical_yn(n + 1, x)) right = 1/x**2 assert_allclose(left, right) def test_spherical_jn_yn_cross_product_2(self): # https://dlmf.nist.gov/10.50.E3 n = np.array([1, 5, 8]) x = np.array([0.1, 1, 10]) left = (spherical_jn(n + 2, x) * spherical_yn(n, x) - spherical_jn(n, x) * spherical_yn(n + 2, x)) right = (2*n + 3)/x**3 assert_allclose(left, right) class TestSphericalIn: def test_spherical_in_exact(self): # https://dlmf.nist.gov/10.49.E9 x = np.array([0.12, 1.23, 12.34, 123.45]) assert_allclose(spherical_in(2, x), (1/x + 3/x**3)*sinh(x) - 3/x**2*cosh(x)) def test_spherical_in_recurrence_real(self): # https://dlmf.nist.gov/10.51.E4 n = np.array([1, 2, 3, 7, 12]) x = 0.12 assert_allclose(spherical_in(n - 1, x) - spherical_in(n + 1,x), (2*n + 1)/x*spherical_in(n, x)) def test_spherical_in_recurrence_complex(self): # https://dlmf.nist.gov/10.51.E1 n = np.array([1, 2, 3, 7, 12]) x = 1.1 + 1.5j assert_allclose(spherical_in(n - 1, x) - spherical_in(n + 1,x), (2*n + 1)/x*spherical_in(n, x)) def test_spherical_in_inf_real(self): # https://dlmf.nist.gov/10.52.E3 n = 5 x = np.array([-inf, inf]) assert_allclose(spherical_in(n, x), np.array([-inf, inf])) def test_spherical_in_inf_complex(self): # https://dlmf.nist.gov/10.52.E5 # Ideally, i1n(n, 1j*inf) = 0 and i1n(n, (1+1j)*inf) = (1+1j)*inf, but # this appears impossible to achieve because C99 regards any complex # value with at least one infinite part as a complex infinity, so # 1j*inf cannot be distinguished from (1+1j)*inf. Therefore, nan is # the correct return value. n = 7 x = np.array([-inf + 0j, inf + 0j, inf*(1+1j)]) assert_allclose(spherical_in(n, x), np.array([-inf, inf, nan])) def test_spherical_in_at_zero(self): # https://dlmf.nist.gov/10.52.E1 # But note that n = 0 is a special case: i0 = sinh(x)/x -> 1 n = np.array([0, 1, 2, 5, 10, 100]) x = 0 assert_allclose(spherical_in(n, x), np.array([1, 0, 0, 0, 0, 0])) class TestSphericalKn: def test_spherical_kn_exact(self): # https://dlmf.nist.gov/10.49.E13 x = np.array([0.12, 1.23, 12.34, 123.45]) assert_allclose(spherical_kn(2, x), pi/2*exp(-x)*(1/x + 3/x**2 + 3/x**3)) def test_spherical_kn_recurrence_real(self): # https://dlmf.nist.gov/10.51.E4 n = np.array([1, 2, 3, 7, 12]) x = 0.12 assert_allclose( (-1)**(n - 1)*spherical_kn(n - 1, x) - (-1)**(n + 1)*spherical_kn(n + 1,x), (-1)**n*(2*n + 1)/x*spherical_kn(n, x) ) def test_spherical_kn_recurrence_complex(self): # https://dlmf.nist.gov/10.51.E4 n = np.array([1, 2, 3, 7, 12]) x = 1.1 + 1.5j assert_allclose( (-1)**(n - 1)*spherical_kn(n - 1, x) - (-1)**(n + 1)*spherical_kn(n + 1,x), (-1)**n*(2*n + 1)/x*spherical_kn(n, x) ) def test_spherical_kn_inf_real(self): # https://dlmf.nist.gov/10.52.E6 n = 5 x = np.array([-inf, inf]) assert_allclose(spherical_kn(n, x), np.array([-inf, 0])) def test_spherical_kn_inf_complex(self): # https://dlmf.nist.gov/10.52.E6 # The behavior at complex infinity depends on the sign of the real # part: if Re(z) >= 0, then the limit is 0; if Re(z) < 0, then it's # z*inf. This distinction cannot be captured, so we return nan. n = 7 x = np.array([-inf + 0j, inf + 0j, inf*(1+1j)]) assert_allclose(spherical_kn(n, x), np.array([-inf, 0, nan])) def test_spherical_kn_at_zero(self): # https://dlmf.nist.gov/10.52.E2 n = np.array([0, 1, 2, 5, 10, 100]) x = 0 assert_allclose(spherical_kn(n, x), np.full(n.shape, inf)) def test_spherical_kn_at_zero_complex(self): # https://dlmf.nist.gov/10.52.E2 n = np.array([0, 1, 2, 5, 10, 100]) x = 0 + 0j assert_allclose(spherical_kn(n, x), np.full(n.shape, nan)) class SphericalDerivativesTestCase: def fundamental_theorem(self, n, a, b): integral, tolerance = quad(lambda z: self.df(n, z), a, b) assert_allclose(integral, self.f(n, b) - self.f(n, a), atol=tolerance) @pytest.mark.slow def test_fundamental_theorem_0(self): self.fundamental_theorem(0, 3.0, 15.0) @pytest.mark.slow def test_fundamental_theorem_7(self): self.fundamental_theorem(7, 0.5, 1.2) class TestSphericalJnDerivatives(SphericalDerivativesTestCase): def f(self, n, z): return spherical_jn(n, z) def df(self, n, z): return spherical_jn(n, z, derivative=True) def test_spherical_jn_d_zero(self): n = np.array([0, 1, 2, 3, 7, 15]) assert_allclose(spherical_jn(n, 0, derivative=True), np.array([0, 1/3, 0, 0, 0, 0])) class TestSphericalYnDerivatives(SphericalDerivativesTestCase): def f(self, n, z): return spherical_yn(n, z) def df(self, n, z): return spherical_yn(n, z, derivative=True) class TestSphericalInDerivatives(SphericalDerivativesTestCase): def f(self, n, z): return spherical_in(n, z) def df(self, n, z): return spherical_in(n, z, derivative=True) def test_spherical_in_d_zero(self): n = np.array([0, 1, 2, 3, 7, 15]) spherical_in(n, 0, derivative=False) assert_allclose(spherical_in(n, 0, derivative=True), np.array([0, 1/3, 0, 0, 0, 0])) class TestSphericalKnDerivatives(SphericalDerivativesTestCase): def f(self, n, z): return spherical_kn(n, z) def df(self, n, z): return spherical_kn(n, z, derivative=True) class TestSphericalOld: # These are tests from the TestSpherical class of test_basic.py, # rewritten to use spherical_* instead of sph_* but otherwise unchanged. def test_sph_in(self): # This test reproduces test_basic.TestSpherical.test_sph_in. i1n = np.empty((2,2)) x = 0.2 i1n[0][0] = spherical_in(0, x) i1n[0][1] = spherical_in(1, x) i1n[1][0] = spherical_in(0, x, derivative=True) i1n[1][1] = spherical_in(1, x, derivative=True) inp0 = (i1n[0][1]) inp1 = (i1n[0][0] - 2.0/0.2 * i1n[0][1]) assert_array_almost_equal(i1n[0],np.array([1.0066800127054699381, 0.066933714568029540839]),12) assert_array_almost_equal(i1n[1],[inp0,inp1],12) def test_sph_in_kn_order0(self): x = 1. sph_i0 = np.empty((2,)) sph_i0[0] = spherical_in(0, x) sph_i0[1] = spherical_in(0, x, derivative=True) sph_i0_expected = np.array([np.sinh(x)/x, np.cosh(x)/x-np.sinh(x)/x**2]) assert_array_almost_equal(r_[sph_i0], sph_i0_expected) sph_k0 = np.empty((2,)) sph_k0[0] = spherical_kn(0, x) sph_k0[1] = spherical_kn(0, x, derivative=True) sph_k0_expected = np.array([0.5*pi*exp(-x)/x, -0.5*pi*exp(-x)*(1/x+1/x**2)]) assert_array_almost_equal(r_[sph_k0], sph_k0_expected) def test_sph_jn(self): s1 = np.empty((2,3)) x = 0.2 s1[0][0] = spherical_jn(0, x) s1[0][1] = spherical_jn(1, x) s1[0][2] = spherical_jn(2, x) s1[1][0] = spherical_jn(0, x, derivative=True) s1[1][1] = spherical_jn(1, x, derivative=True) s1[1][2] = spherical_jn(2, x, derivative=True) s10 = -s1[0][1] s11 = s1[0][0]-2.0/0.2*s1[0][1] s12 = s1[0][1]-3.0/0.2*s1[0][2] assert_array_almost_equal(s1[0],[0.99334665397530607731, 0.066400380670322230863, 0.0026590560795273856680],12) assert_array_almost_equal(s1[1],[s10,s11,s12],12) def test_sph_kn(self): kn = np.empty((2,3)) x = 0.2 kn[0][0] = spherical_kn(0, x) kn[0][1] = spherical_kn(1, x) kn[0][2] = spherical_kn(2, x) kn[1][0] = spherical_kn(0, x, derivative=True) kn[1][1] = spherical_kn(1, x, derivative=True) kn[1][2] = spherical_kn(2, x, derivative=True) kn0 = -kn[0][1] kn1 = -kn[0][0]-2.0/0.2*kn[0][1] kn2 = -kn[0][1]-3.0/0.2*kn[0][2] assert_array_almost_equal(kn[0],[6.4302962978445670140, 38.581777787067402086, 585.15696310385559829],12) assert_array_almost_equal(kn[1],[kn0,kn1,kn2],9) def test_sph_yn(self): sy1 = spherical_yn(2, 0.2) sy2 = spherical_yn(0, 0.2) assert_almost_equal(sy1,-377.52483,5) # previous values in the system assert_almost_equal(sy2,-4.9003329,5) sphpy = (spherical_yn(0, 0.2) - 2*spherical_yn(2, 0.2))/3 sy3 = spherical_yn(1, 0.2, derivative=True) # compare correct derivative val. (correct =-system val). assert_almost_equal(sy3,sphpy,4)