"""Calibration of predicted probabilities.""" # Author: Alexandre Gramfort # Balazs Kegl # Jan Hendrik Metzen # Mathieu Blondel # # License: BSD 3 clause import warnings from inspect import signature from math import log from numbers import Integral, Real import numpy as np from scipy.optimize import minimize from scipy.special import expit from sklearn.utils import Bunch from ._loss import HalfBinomialLoss from .base import ( BaseEstimator, ClassifierMixin, MetaEstimatorMixin, RegressorMixin, _fit_context, clone, ) from .isotonic import IsotonicRegression from .model_selection import check_cv, cross_val_predict from .preprocessing import LabelEncoder, label_binarize from .svm import LinearSVC from .utils import ( _safe_indexing, column_or_1d, indexable, ) from .utils._param_validation import ( HasMethods, Interval, StrOptions, validate_params, ) from .utils._plotting import _BinaryClassifierCurveDisplayMixin from .utils._response import _get_response_values, _process_predict_proba from .utils.metadata_routing import ( MetadataRouter, MethodMapping, _routing_enabled, process_routing, ) from .utils.multiclass import check_classification_targets from .utils.parallel import Parallel, delayed from .utils.validation import ( _check_method_params, _check_pos_label_consistency, _check_response_method, _check_sample_weight, _num_samples, check_consistent_length, check_is_fitted, ) class CalibratedClassifierCV(ClassifierMixin, MetaEstimatorMixin, BaseEstimator): """Probability calibration with isotonic regression or logistic regression. This class uses cross-validation to both estimate the parameters of a classifier and subsequently calibrate a classifier. With default `ensemble=True`, for each cv split it fits a copy of the base estimator to the training subset, and calibrates it using the testing subset. For prediction, predicted probabilities are averaged across these individual calibrated classifiers. When `ensemble=False`, cross-validation is used to obtain unbiased predictions, via :func:`~sklearn.model_selection.cross_val_predict`, which are then used for calibration. For prediction, the base estimator, trained using all the data, is used. This is the prediction method implemented when `probabilities=True` for :class:`~sklearn.svm.SVC` and :class:`~sklearn.svm.NuSVC` estimators (see :ref:`User Guide ` for details). Already fitted classifiers can be calibrated via the parameter `cv="prefit"`. In this case, no cross-validation is used and all provided data is used for calibration. The user has to take care manually that data for model fitting and calibration are disjoint. The calibration is based on the :term:`decision_function` method of the `estimator` if it exists, else on :term:`predict_proba`. Read more in the :ref:`User Guide `. Parameters ---------- estimator : estimator instance, default=None The classifier whose output need to be calibrated to provide more accurate `predict_proba` outputs. The default classifier is a :class:`~sklearn.svm.LinearSVC`. .. versionadded:: 1.2 method : {'sigmoid', 'isotonic'}, default='sigmoid' The method to use for calibration. Can be 'sigmoid' which corresponds to Platt's method (i.e. a logistic regression model) or 'isotonic' which is a non-parametric approach. It is not advised to use isotonic calibration with too few calibration samples ``(<<1000)`` since it tends to overfit. cv : int, cross-validation generator, iterable or "prefit", \ default=None Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 5-fold cross-validation, - integer, to specify the number of folds. - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. For integer/None inputs, if ``y`` is binary or multiclass, :class:`~sklearn.model_selection.StratifiedKFold` is used. If ``y`` is neither binary nor multiclass, :class:`~sklearn.model_selection.KFold` is used. Refer to the :ref:`User Guide ` for the various cross-validation strategies that can be used here. If "prefit" is passed, it is assumed that `estimator` has been fitted already and all data is used for calibration. .. versionchanged:: 0.22 ``cv`` default value if None changed from 3-fold to 5-fold. n_jobs : int, default=None Number of jobs to run in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. Base estimator clones are fitted in parallel across cross-validation iterations. Therefore parallelism happens only when `cv != "prefit"`. See :term:`Glossary ` for more details. .. versionadded:: 0.24 ensemble : bool, default=True Determines how the calibrator is fitted when `cv` is not `'prefit'`. Ignored if `cv='prefit'`. If `True`, the `estimator` is fitted using training data, and calibrated using testing data, for each `cv` fold. The final estimator is an ensemble of `n_cv` fitted classifier and calibrator pairs, where `n_cv` is the number of cross-validation folds. The output is the average predicted probabilities of all pairs. If `False`, `cv` is used to compute unbiased predictions, via :func:`~sklearn.model_selection.cross_val_predict`, which are then used for calibration. At prediction time, the classifier used is the `estimator` trained on all the data. Note that this method is also internally implemented in :mod:`sklearn.svm` estimators with the `probabilities=True` parameter. .. versionadded:: 0.24 Attributes ---------- classes_ : ndarray of shape (n_classes,) The class labels. n_features_in_ : int Number of features seen during :term:`fit`. Only defined if the underlying estimator exposes such an attribute when fit. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Only defined if the underlying estimator exposes such an attribute when fit. .. versionadded:: 1.0 calibrated_classifiers_ : list (len() equal to cv or 1 if `cv="prefit"` \ or `ensemble=False`) The list of classifier and calibrator pairs. - When `cv="prefit"`, the fitted `estimator` and fitted calibrator. - When `cv` is not "prefit" and `ensemble=True`, `n_cv` fitted `estimator` and calibrator pairs. `n_cv` is the number of cross-validation folds. - When `cv` is not "prefit" and `ensemble=False`, the `estimator`, fitted on all the data, and fitted calibrator. .. versionchanged:: 0.24 Single calibrated classifier case when `ensemble=False`. See Also -------- calibration_curve : Compute true and predicted probabilities for a calibration curve. References ---------- .. [1] Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001 .. [2] Transforming Classifier Scores into Accurate Multiclass Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002) .. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, J. Platt, (1999) .. [4] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 Examples -------- >>> from sklearn.datasets import make_classification >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.calibration import CalibratedClassifierCV >>> X, y = make_classification(n_samples=100, n_features=2, ... n_redundant=0, random_state=42) >>> base_clf = GaussianNB() >>> calibrated_clf = CalibratedClassifierCV(base_clf, cv=3) >>> calibrated_clf.fit(X, y) CalibratedClassifierCV(...) >>> len(calibrated_clf.calibrated_classifiers_) 3 >>> calibrated_clf.predict_proba(X)[:5, :] array([[0.110..., 0.889...], [0.072..., 0.927...], [0.928..., 0.071...], [0.928..., 0.071...], [0.071..., 0.928...]]) >>> from sklearn.model_selection import train_test_split >>> X, y = make_classification(n_samples=100, n_features=2, ... n_redundant=0, random_state=42) >>> X_train, X_calib, y_train, y_calib = train_test_split( ... X, y, random_state=42 ... ) >>> base_clf = GaussianNB() >>> base_clf.fit(X_train, y_train) GaussianNB() >>> calibrated_clf = CalibratedClassifierCV(base_clf, cv="prefit") >>> calibrated_clf.fit(X_calib, y_calib) CalibratedClassifierCV(...) >>> len(calibrated_clf.calibrated_classifiers_) 1 >>> calibrated_clf.predict_proba([[-0.5, 0.5]]) array([[0.936..., 0.063...]]) """ _parameter_constraints: dict = { "estimator": [ HasMethods(["fit", "predict_proba"]), HasMethods(["fit", "decision_function"]), None, ], "method": [StrOptions({"isotonic", "sigmoid"})], "cv": ["cv_object", StrOptions({"prefit"})], "n_jobs": [Integral, None], "ensemble": ["boolean"], } def __init__( self, estimator=None, *, method="sigmoid", cv=None, n_jobs=None, ensemble=True, ): self.estimator = estimator self.method = method self.cv = cv self.n_jobs = n_jobs self.ensemble = ensemble def _get_estimator(self): """Resolve which estimator to return (default is LinearSVC)""" if self.estimator is None: # we want all classifiers that don't expose a random_state # to be deterministic (and we don't want to expose this one). estimator = LinearSVC(random_state=0, dual="auto") if _routing_enabled(): estimator.set_fit_request(sample_weight=True) else: estimator = self.estimator return estimator @_fit_context( # CalibratedClassifierCV.estimator is not validated yet prefer_skip_nested_validation=False ) def fit(self, X, y, sample_weight=None, **fit_params): """Fit the calibrated model. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. **fit_params : dict Parameters to pass to the `fit` method of the underlying classifier. Returns ------- self : object Returns an instance of self. """ check_classification_targets(y) X, y = indexable(X, y) if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X) estimator = self._get_estimator() self.calibrated_classifiers_ = [] if self.cv == "prefit": # `classes_` should be consistent with that of estimator check_is_fitted(self.estimator, attributes=["classes_"]) self.classes_ = self.estimator.classes_ predictions, _ = _get_response_values( estimator, X, response_method=["decision_function", "predict_proba"], ) if predictions.ndim == 1: # Reshape binary output from `(n_samples,)` to `(n_samples, 1)` predictions = predictions.reshape(-1, 1) calibrated_classifier = _fit_calibrator( estimator, predictions, y, self.classes_, self.method, sample_weight, ) self.calibrated_classifiers_.append(calibrated_classifier) else: # Set `classes_` using all `y` label_encoder_ = LabelEncoder().fit(y) self.classes_ = label_encoder_.classes_ if _routing_enabled(): routed_params = process_routing( self, "fit", sample_weight=sample_weight, **fit_params, ) else: # sample_weight checks fit_parameters = signature(estimator.fit).parameters supports_sw = "sample_weight" in fit_parameters if sample_weight is not None and not supports_sw: estimator_name = type(estimator).__name__ warnings.warn( f"Since {estimator_name} does not appear to accept" " sample_weight, sample weights will only be used for the" " calibration itself. This can be caused by a limitation of" " the current scikit-learn API. See the following issue for" " more details:" " https://github.com/scikit-learn/scikit-learn/issues/21134." " Be warned that the result of the calibration is likely to be" " incorrect." ) routed_params = Bunch() routed_params.splitter = Bunch(split={}) # no routing for splitter routed_params.estimator = Bunch(fit=fit_params) if sample_weight is not None and supports_sw: routed_params.estimator.fit["sample_weight"] = sample_weight # Check that each cross-validation fold can have at least one # example per class if isinstance(self.cv, int): n_folds = self.cv elif hasattr(self.cv, "n_splits"): n_folds = self.cv.n_splits else: n_folds = None if n_folds and np.any( [np.sum(y == class_) < n_folds for class_ in self.classes_] ): raise ValueError( f"Requesting {n_folds}-fold " "cross-validation but provided less than " f"{n_folds} examples for at least one class." ) cv = check_cv(self.cv, y, classifier=True) if self.ensemble: parallel = Parallel(n_jobs=self.n_jobs) self.calibrated_classifiers_ = parallel( delayed(_fit_classifier_calibrator_pair)( clone(estimator), X, y, train=train, test=test, method=self.method, classes=self.classes_, sample_weight=sample_weight, fit_params=routed_params.estimator.fit, ) for train, test in cv.split(X, y, **routed_params.splitter.split) ) else: this_estimator = clone(estimator) method_name = _check_response_method( this_estimator, ["decision_function", "predict_proba"], ).__name__ predictions = cross_val_predict( estimator=this_estimator, X=X, y=y, cv=cv, method=method_name, n_jobs=self.n_jobs, params=routed_params.estimator.fit, ) if len(self.classes_) == 2: # Ensure shape (n_samples, 1) in the binary case if method_name == "predict_proba": # Select the probability column of the postive class predictions = _process_predict_proba( y_pred=predictions, target_type="binary", classes=self.classes_, pos_label=self.classes_[1], ) predictions = predictions.reshape(-1, 1) this_estimator.fit(X, y, **routed_params.estimator.fit) # Note: Here we don't pass on fit_params because the supported # calibrators don't support fit_params anyway calibrated_classifier = _fit_calibrator( this_estimator, predictions, y, self.classes_, self.method, sample_weight, ) self.calibrated_classifiers_.append(calibrated_classifier) first_clf = self.calibrated_classifiers_[0].estimator if hasattr(first_clf, "n_features_in_"): self.n_features_in_ = first_clf.n_features_in_ if hasattr(first_clf, "feature_names_in_"): self.feature_names_in_ = first_clf.feature_names_in_ return self def predict_proba(self, X): """Calibrated probabilities of classification. This function returns calibrated probabilities of classification according to each class on an array of test vectors X. Parameters ---------- X : array-like of shape (n_samples, n_features) The samples, as accepted by `estimator.predict_proba`. Returns ------- C : ndarray of shape (n_samples, n_classes) The predicted probas. """ check_is_fitted(self) # Compute the arithmetic mean of the predictions of the calibrated # classifiers mean_proba = np.zeros((_num_samples(X), len(self.classes_))) for calibrated_classifier in self.calibrated_classifiers_: proba = calibrated_classifier.predict_proba(X) mean_proba += proba mean_proba /= len(self.calibrated_classifiers_) return mean_proba def predict(self, X): """Predict the target of new samples. The predicted class is the class that has the highest probability, and can thus be different from the prediction of the uncalibrated classifier. Parameters ---------- X : array-like of shape (n_samples, n_features) The samples, as accepted by `estimator.predict`. Returns ------- C : ndarray of shape (n_samples,) The predicted class. """ check_is_fitted(self) return self.classes_[np.argmax(self.predict_proba(X), axis=1)] def get_metadata_routing(self): """Get metadata routing of this object. Please check :ref:`User Guide ` on how the routing mechanism works. Returns ------- routing : MetadataRouter A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating routing information. """ router = ( MetadataRouter(owner=self.__class__.__name__) .add_self_request(self) .add( estimator=self._get_estimator(), method_mapping=MethodMapping().add(callee="fit", caller="fit"), ) .add( splitter=self.cv, method_mapping=MethodMapping().add(callee="split", caller="fit"), ) ) return router def _more_tags(self): return { "_xfail_checks": { "check_sample_weights_invariance": ( "Due to the cross-validation and sample ordering, removing a sample" " is not strictly equal to putting is weight to zero. Specific unit" " tests are added for CalibratedClassifierCV specifically." ), } } def _fit_classifier_calibrator_pair( estimator, X, y, train, test, method, classes, sample_weight=None, fit_params=None, ): """Fit a classifier/calibration pair on a given train/test split. Fit the classifier on the train set, compute its predictions on the test set and use the predictions as input to fit the calibrator along with the test labels. Parameters ---------- estimator : estimator instance Cloned base estimator. X : array-like, shape (n_samples, n_features) Sample data. y : array-like, shape (n_samples,) Targets. train : ndarray, shape (n_train_indices,) Indices of the training subset. test : ndarray, shape (n_test_indices,) Indices of the testing subset. method : {'sigmoid', 'isotonic'} Method to use for calibration. classes : ndarray, shape (n_classes,) The target classes. sample_weight : array-like, default=None Sample weights for `X`. fit_params : dict, default=None Parameters to pass to the `fit` method of the underlying classifier. Returns ------- calibrated_classifier : _CalibratedClassifier instance """ fit_params_train = _check_method_params(X, params=fit_params, indices=train) X_train, y_train = _safe_indexing(X, train), _safe_indexing(y, train) X_test, y_test = _safe_indexing(X, test), _safe_indexing(y, test) estimator.fit(X_train, y_train, **fit_params_train) predictions, _ = _get_response_values( estimator, X_test, response_method=["decision_function", "predict_proba"], ) if predictions.ndim == 1: # Reshape binary output from `(n_samples,)` to `(n_samples, 1)` predictions = predictions.reshape(-1, 1) sw_test = None if sample_weight is None else _safe_indexing(sample_weight, test) calibrated_classifier = _fit_calibrator( estimator, predictions, y_test, classes, method, sample_weight=sw_test ) return calibrated_classifier def _fit_calibrator(clf, predictions, y, classes, method, sample_weight=None): """Fit calibrator(s) and return a `_CalibratedClassifier` instance. `n_classes` (i.e. `len(clf.classes_)`) calibrators are fitted. However, if `n_classes` equals 2, one calibrator is fitted. Parameters ---------- clf : estimator instance Fitted classifier. predictions : array-like, shape (n_samples, n_classes) or (n_samples, 1) \ when binary. Raw predictions returned by the un-calibrated base classifier. y : array-like, shape (n_samples,) The targets. classes : ndarray, shape (n_classes,) All the prediction classes. method : {'sigmoid', 'isotonic'} The method to use for calibration. sample_weight : ndarray, shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- pipeline : _CalibratedClassifier instance """ Y = label_binarize(y, classes=classes) label_encoder = LabelEncoder().fit(classes) pos_class_indices = label_encoder.transform(clf.classes_) calibrators = [] for class_idx, this_pred in zip(pos_class_indices, predictions.T): if method == "isotonic": calibrator = IsotonicRegression(out_of_bounds="clip") else: # "sigmoid" calibrator = _SigmoidCalibration() calibrator.fit(this_pred, Y[:, class_idx], sample_weight) calibrators.append(calibrator) pipeline = _CalibratedClassifier(clf, calibrators, method=method, classes=classes) return pipeline class _CalibratedClassifier: """Pipeline-like chaining a fitted classifier and its fitted calibrators. Parameters ---------- estimator : estimator instance Fitted classifier. calibrators : list of fitted estimator instances List of fitted calibrators (either 'IsotonicRegression' or '_SigmoidCalibration'). The number of calibrators equals the number of classes. However, if there are 2 classes, the list contains only one fitted calibrator. classes : array-like of shape (n_classes,) All the prediction classes. method : {'sigmoid', 'isotonic'}, default='sigmoid' The method to use for calibration. Can be 'sigmoid' which corresponds to Platt's method or 'isotonic' which is a non-parametric approach based on isotonic regression. """ def __init__(self, estimator, calibrators, *, classes, method="sigmoid"): self.estimator = estimator self.calibrators = calibrators self.classes = classes self.method = method def predict_proba(self, X): """Calculate calibrated probabilities. Calculates classification calibrated probabilities for each class, in a one-vs-all manner, for `X`. Parameters ---------- X : ndarray of shape (n_samples, n_features) The sample data. Returns ------- proba : array, shape (n_samples, n_classes) The predicted probabilities. Can be exact zeros. """ predictions, _ = _get_response_values( self.estimator, X, response_method=["decision_function", "predict_proba"], ) if predictions.ndim == 1: # Reshape binary output from `(n_samples,)` to `(n_samples, 1)` predictions = predictions.reshape(-1, 1) n_classes = len(self.classes) label_encoder = LabelEncoder().fit(self.classes) pos_class_indices = label_encoder.transform(self.estimator.classes_) proba = np.zeros((_num_samples(X), n_classes)) for class_idx, this_pred, calibrator in zip( pos_class_indices, predictions.T, self.calibrators ): if n_classes == 2: # When binary, `predictions` consists only of predictions for # clf.classes_[1] but `pos_class_indices` = 0 class_idx += 1 proba[:, class_idx] = calibrator.predict(this_pred) # Normalize the probabilities if n_classes == 2: proba[:, 0] = 1.0 - proba[:, 1] else: denominator = np.sum(proba, axis=1)[:, np.newaxis] # In the edge case where for each class calibrator returns a null # probability for a given sample, use the uniform distribution # instead. uniform_proba = np.full_like(proba, 1 / n_classes) proba = np.divide( proba, denominator, out=uniform_proba, where=denominator != 0 ) # Deal with cases where the predicted probability minimally exceeds 1.0 proba[(1.0 < proba) & (proba <= 1.0 + 1e-5)] = 1.0 return proba # The max_abs_prediction_threshold was approximated using # logit(np.finfo(np.float64).eps) which is about -36 def _sigmoid_calibration( predictions, y, sample_weight=None, max_abs_prediction_threshold=30 ): """Probability Calibration with sigmoid method (Platt 2000) Parameters ---------- predictions : ndarray of shape (n_samples,) The decision function or predict proba for the samples. y : ndarray of shape (n_samples,) The targets. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- a : float The slope. b : float The intercept. References ---------- Platt, "Probabilistic Outputs for Support Vector Machines" """ predictions = column_or_1d(predictions) y = column_or_1d(y) F = predictions # F follows Platt's notations scale_constant = 1.0 max_prediction = np.max(np.abs(F)) # If the predictions have large values we scale them in order to bring # them within a suitable range. This has no effect on the final # (prediction) result because linear models like Logisitic Regression # without a penalty are invariant to multiplying the features by a # constant. if max_prediction >= max_abs_prediction_threshold: scale_constant = max_prediction # We rescale the features in a copy: inplace rescaling could confuse # the caller and make the code harder to reason about. F = F / scale_constant # Bayesian priors (see Platt end of section 2.2): # It corresponds to the number of samples, taking into account the # `sample_weight`. mask_negative_samples = y <= 0 if sample_weight is not None: prior0 = (sample_weight[mask_negative_samples]).sum() prior1 = (sample_weight[~mask_negative_samples]).sum() else: prior0 = float(np.sum(mask_negative_samples)) prior1 = y.shape[0] - prior0 T = np.zeros_like(y, dtype=predictions.dtype) T[y > 0] = (prior1 + 1.0) / (prior1 + 2.0) T[y <= 0] = 1.0 / (prior0 + 2.0) bin_loss = HalfBinomialLoss() def loss_grad(AB): # .astype below is needed to ensure y_true and raw_prediction have the # same dtype. With result = np.float64(0) * np.array([1, 2], dtype=np.float32) # - in Numpy 2, result.dtype is float64 # - in Numpy<2, result.dtype is float32 raw_prediction = -(AB[0] * F + AB[1]).astype(dtype=predictions.dtype) l, g = bin_loss.loss_gradient( y_true=T, raw_prediction=raw_prediction, sample_weight=sample_weight, ) loss = l.sum() # TODO: Remove casting to np.float64 when minimum supported SciPy is 1.11.2 # With SciPy >= 1.11.2, the LBFGS implementation will cast to float64 # https://github.com/scipy/scipy/pull/18825. # Here we cast to float64 to support SciPy < 1.11.2 grad = np.asarray([-g @ F, -g.sum()], dtype=np.float64) return loss, grad AB0 = np.array([0.0, log((prior0 + 1.0) / (prior1 + 1.0))]) opt_result = minimize( loss_grad, AB0, method="L-BFGS-B", jac=True, options={ "gtol": 1e-6, "ftol": 64 * np.finfo(float).eps, }, ) AB_ = opt_result.x # The tuned multiplicative parameter is converted back to the original # input feature scale. The offset parameter does not need rescaling since # we did not rescale the outcome variable. return AB_[0] / scale_constant, AB_[1] class _SigmoidCalibration(RegressorMixin, BaseEstimator): """Sigmoid regression model. Attributes ---------- a_ : float The slope. b_ : float The intercept. """ def fit(self, X, y, sample_weight=None): """Fit the model using X, y as training data. Parameters ---------- X : array-like of shape (n_samples,) Training data. y : array-like of shape (n_samples,) Training target. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ X = column_or_1d(X) y = column_or_1d(y) X, y = indexable(X, y) self.a_, self.b_ = _sigmoid_calibration(X, y, sample_weight) return self def predict(self, T): """Predict new data by linear interpolation. Parameters ---------- T : array-like of shape (n_samples,) Data to predict from. Returns ------- T_ : ndarray of shape (n_samples,) The predicted data. """ T = column_or_1d(T) return expit(-(self.a_ * T + self.b_)) @validate_params( { "y_true": ["array-like"], "y_prob": ["array-like"], "pos_label": [Real, str, "boolean", None], "n_bins": [Interval(Integral, 1, None, closed="left")], "strategy": [StrOptions({"uniform", "quantile"})], }, prefer_skip_nested_validation=True, ) def calibration_curve( y_true, y_prob, *, pos_label=None, n_bins=5, strategy="uniform", ): """Compute true and predicted probabilities for a calibration curve. The method assumes the inputs come from a binary classifier, and discretize the [0, 1] interval into bins. Calibration curves may also be referred to as reliability diagrams. Read more in the :ref:`User Guide `. Parameters ---------- y_true : array-like of shape (n_samples,) True targets. y_prob : array-like of shape (n_samples,) Probabilities of the positive class. pos_label : int, float, bool or str, default=None The label of the positive class. .. versionadded:: 1.1 n_bins : int, default=5 Number of bins to discretize the [0, 1] interval. A bigger number requires more data. Bins with no samples (i.e. without corresponding values in `y_prob`) will not be returned, thus the returned arrays may have less than `n_bins` values. strategy : {'uniform', 'quantile'}, default='uniform' Strategy used to define the widths of the bins. uniform The bins have identical widths. quantile The bins have the same number of samples and depend on `y_prob`. Returns ------- prob_true : ndarray of shape (n_bins,) or smaller The proportion of samples whose class is the positive class, in each bin (fraction of positives). prob_pred : ndarray of shape (n_bins,) or smaller The mean predicted probability in each bin. References ---------- Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good Probabilities With Supervised Learning, in Proceedings of the 22nd International Conference on Machine Learning (ICML). See section 4 (Qualitative Analysis of Predictions). Examples -------- >>> import numpy as np >>> from sklearn.calibration import calibration_curve >>> y_true = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1]) >>> y_pred = np.array([0.1, 0.2, 0.3, 0.4, 0.65, 0.7, 0.8, 0.9, 1.]) >>> prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=3) >>> prob_true array([0. , 0.5, 1. ]) >>> prob_pred array([0.2 , 0.525, 0.85 ]) """ y_true = column_or_1d(y_true) y_prob = column_or_1d(y_prob) check_consistent_length(y_true, y_prob) pos_label = _check_pos_label_consistency(pos_label, y_true) if y_prob.min() < 0 or y_prob.max() > 1: raise ValueError("y_prob has values outside [0, 1].") labels = np.unique(y_true) if len(labels) > 2: raise ValueError( f"Only binary classification is supported. Provided labels {labels}." ) y_true = y_true == pos_label if strategy == "quantile": # Determine bin edges by distribution of data quantiles = np.linspace(0, 1, n_bins + 1) bins = np.percentile(y_prob, quantiles * 100) elif strategy == "uniform": bins = np.linspace(0.0, 1.0, n_bins + 1) else: raise ValueError( "Invalid entry to 'strategy' input. Strategy " "must be either 'quantile' or 'uniform'." ) binids = np.searchsorted(bins[1:-1], y_prob) bin_sums = np.bincount(binids, weights=y_prob, minlength=len(bins)) bin_true = np.bincount(binids, weights=y_true, minlength=len(bins)) bin_total = np.bincount(binids, minlength=len(bins)) nonzero = bin_total != 0 prob_true = bin_true[nonzero] / bin_total[nonzero] prob_pred = bin_sums[nonzero] / bin_total[nonzero] return prob_true, prob_pred class CalibrationDisplay(_BinaryClassifierCurveDisplayMixin): """Calibration curve (also known as reliability diagram) visualization. It is recommended to use :func:`~sklearn.calibration.CalibrationDisplay.from_estimator` or :func:`~sklearn.calibration.CalibrationDisplay.from_predictions` to create a `CalibrationDisplay`. All parameters are stored as attributes. Read more about calibration in the :ref:`User Guide ` and more about the scikit-learn visualization API in :ref:`visualizations`. .. versionadded:: 1.0 Parameters ---------- prob_true : ndarray of shape (n_bins,) The proportion of samples whose class is the positive class (fraction of positives), in each bin. prob_pred : ndarray of shape (n_bins,) The mean predicted probability in each bin. y_prob : ndarray of shape (n_samples,) Probability estimates for the positive class, for each sample. estimator_name : str, default=None Name of estimator. If None, the estimator name is not shown. pos_label : int, float, bool or str, default=None The positive class when computing the calibration curve. By default, `pos_label` is set to `estimators.classes_[1]` when using `from_estimator` and set to 1 when using `from_predictions`. .. versionadded:: 1.1 Attributes ---------- line_ : matplotlib Artist Calibration curve. ax_ : matplotlib Axes Axes with calibration curve. figure_ : matplotlib Figure Figure containing the curve. See Also -------- calibration_curve : Compute true and predicted probabilities for a calibration curve. CalibrationDisplay.from_predictions : Plot calibration curve using true and predicted labels. CalibrationDisplay.from_estimator : Plot calibration curve using an estimator and data. Examples -------- >>> from sklearn.datasets import make_classification >>> from sklearn.model_selection import train_test_split >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.calibration import calibration_curve, CalibrationDisplay >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, random_state=0) >>> clf = LogisticRegression(random_state=0) >>> clf.fit(X_train, y_train) LogisticRegression(random_state=0) >>> y_prob = clf.predict_proba(X_test)[:, 1] >>> prob_true, prob_pred = calibration_curve(y_test, y_prob, n_bins=10) >>> disp = CalibrationDisplay(prob_true, prob_pred, y_prob) >>> disp.plot() <...> """ def __init__( self, prob_true, prob_pred, y_prob, *, estimator_name=None, pos_label=None ): self.prob_true = prob_true self.prob_pred = prob_pred self.y_prob = y_prob self.estimator_name = estimator_name self.pos_label = pos_label def plot(self, *, ax=None, name=None, ref_line=True, **kwargs): """Plot visualization. Extra keyword arguments will be passed to :func:`matplotlib.pyplot.plot`. Parameters ---------- ax : Matplotlib Axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. name : str, default=None Name for labeling curve. If `None`, use `estimator_name` if not `None`, otherwise no labeling is shown. ref_line : bool, default=True If `True`, plots a reference line representing a perfectly calibrated classifier. **kwargs : dict Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`. Returns ------- display : :class:`~sklearn.calibration.CalibrationDisplay` Object that stores computed values. """ self.ax_, self.figure_, name = self._validate_plot_params(ax=ax, name=name) info_pos_label = ( f"(Positive class: {self.pos_label})" if self.pos_label is not None else "" ) line_kwargs = {"marker": "s", "linestyle": "-"} if name is not None: line_kwargs["label"] = name line_kwargs.update(**kwargs) ref_line_label = "Perfectly calibrated" existing_ref_line = ref_line_label in self.ax_.get_legend_handles_labels()[1] if ref_line and not existing_ref_line: self.ax_.plot([0, 1], [0, 1], "k:", label=ref_line_label) self.line_ = self.ax_.plot(self.prob_pred, self.prob_true, **line_kwargs)[0] # We always have to show the legend for at least the reference line self.ax_.legend(loc="lower right") xlabel = f"Mean predicted probability {info_pos_label}" ylabel = f"Fraction of positives {info_pos_label}" self.ax_.set(xlabel=xlabel, ylabel=ylabel) return self @classmethod def from_estimator( cls, estimator, X, y, *, n_bins=5, strategy="uniform", pos_label=None, name=None, ref_line=True, ax=None, **kwargs, ): """Plot calibration curve using a binary classifier and data. A calibration curve, also known as a reliability diagram, uses inputs from a binary classifier and plots the average predicted probability for each bin against the fraction of positive classes, on the y-axis. Extra keyword arguments will be passed to :func:`matplotlib.pyplot.plot`. Read more about calibration in the :ref:`User Guide ` and more about the scikit-learn visualization API in :ref:`visualizations`. .. versionadded:: 1.0 Parameters ---------- estimator : estimator instance Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline` in which the last estimator is a classifier. The classifier must have a :term:`predict_proba` method. X : {array-like, sparse matrix} of shape (n_samples, n_features) Input values. y : array-like of shape (n_samples,) Binary target values. n_bins : int, default=5 Number of bins to discretize the [0, 1] interval into when calculating the calibration curve. A bigger number requires more data. strategy : {'uniform', 'quantile'}, default='uniform' Strategy used to define the widths of the bins. - `'uniform'`: The bins have identical widths. - `'quantile'`: The bins have the same number of samples and depend on predicted probabilities. pos_label : int, float, bool or str, default=None The positive class when computing the calibration curve. By default, `estimators.classes_[1]` is considered as the positive class. .. versionadded:: 1.1 name : str, default=None Name for labeling curve. If `None`, the name of the estimator is used. ref_line : bool, default=True If `True`, plots a reference line representing a perfectly calibrated classifier. ax : matplotlib axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. **kwargs : dict Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`. Returns ------- display : :class:`~sklearn.calibration.CalibrationDisplay`. Object that stores computed values. See Also -------- CalibrationDisplay.from_predictions : Plot calibration curve using true and predicted labels. Examples -------- >>> import matplotlib.pyplot as plt >>> from sklearn.datasets import make_classification >>> from sklearn.model_selection import train_test_split >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.calibration import CalibrationDisplay >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, random_state=0) >>> clf = LogisticRegression(random_state=0) >>> clf.fit(X_train, y_train) LogisticRegression(random_state=0) >>> disp = CalibrationDisplay.from_estimator(clf, X_test, y_test) >>> plt.show() """ y_prob, pos_label, name = cls._validate_and_get_response_values( estimator, X, y, response_method="predict_proba", pos_label=pos_label, name=name, ) return cls.from_predictions( y, y_prob, n_bins=n_bins, strategy=strategy, pos_label=pos_label, name=name, ref_line=ref_line, ax=ax, **kwargs, ) @classmethod def from_predictions( cls, y_true, y_prob, *, n_bins=5, strategy="uniform", pos_label=None, name=None, ref_line=True, ax=None, **kwargs, ): """Plot calibration curve using true labels and predicted probabilities. Calibration curve, also known as reliability diagram, uses inputs from a binary classifier and plots the average predicted probability for each bin against the fraction of positive classes, on the y-axis. Extra keyword arguments will be passed to :func:`matplotlib.pyplot.plot`. Read more about calibration in the :ref:`User Guide ` and more about the scikit-learn visualization API in :ref:`visualizations`. .. versionadded:: 1.0 Parameters ---------- y_true : array-like of shape (n_samples,) True labels. y_prob : array-like of shape (n_samples,) The predicted probabilities of the positive class. n_bins : int, default=5 Number of bins to discretize the [0, 1] interval into when calculating the calibration curve. A bigger number requires more data. strategy : {'uniform', 'quantile'}, default='uniform' Strategy used to define the widths of the bins. - `'uniform'`: The bins have identical widths. - `'quantile'`: The bins have the same number of samples and depend on predicted probabilities. pos_label : int, float, bool or str, default=None The positive class when computing the calibration curve. By default `pos_label` is set to 1. .. versionadded:: 1.1 name : str, default=None Name for labeling curve. ref_line : bool, default=True If `True`, plots a reference line representing a perfectly calibrated classifier. ax : matplotlib axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. **kwargs : dict Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`. Returns ------- display : :class:`~sklearn.calibration.CalibrationDisplay`. Object that stores computed values. See Also -------- CalibrationDisplay.from_estimator : Plot calibration curve using an estimator and data. Examples -------- >>> import matplotlib.pyplot as plt >>> from sklearn.datasets import make_classification >>> from sklearn.model_selection import train_test_split >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.calibration import CalibrationDisplay >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, random_state=0) >>> clf = LogisticRegression(random_state=0) >>> clf.fit(X_train, y_train) LogisticRegression(random_state=0) >>> y_prob = clf.predict_proba(X_test)[:, 1] >>> disp = CalibrationDisplay.from_predictions(y_test, y_prob) >>> plt.show() """ pos_label_validated, name = cls._validate_from_predictions_params( y_true, y_prob, sample_weight=None, pos_label=pos_label, name=name ) prob_true, prob_pred = calibration_curve( y_true, y_prob, n_bins=n_bins, strategy=strategy, pos_label=pos_label ) disp = cls( prob_true=prob_true, prob_pred=prob_pred, y_prob=y_prob, estimator_name=name, pos_label=pos_label_validated, ) return disp.plot(ax=ax, ref_line=ref_line, **kwargs)