"""Modified Olivetti faces dataset. The original database was available from (now defunct) https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html The version retrieved here comes in MATLAB format from the personal web page of Sam Roweis: https://cs.nyu.edu/~roweis/ """ # Copyright (c) 2011 David Warde-Farley # License: BSD 3 clause from os import PathLike, makedirs, remove from os.path import exists import joblib import numpy as np from scipy.io import loadmat from ..utils import Bunch, check_random_state from ..utils._param_validation import validate_params from . import get_data_home from ._base import RemoteFileMetadata, _fetch_remote, _pkl_filepath, load_descr # The original data can be found at: # https://cs.nyu.edu/~roweis/data/olivettifaces.mat FACES = RemoteFileMetadata( filename="olivettifaces.mat", url="https://ndownloader.figshare.com/files/5976027", checksum="b612fb967f2dc77c9c62d3e1266e0c73d5fca46a4b8906c18e454d41af987794", ) @validate_params( { "data_home": [str, PathLike, None], "shuffle": ["boolean"], "random_state": ["random_state"], "download_if_missing": ["boolean"], "return_X_y": ["boolean"], }, prefer_skip_nested_validation=True, ) def fetch_olivetti_faces( *, data_home=None, shuffle=False, random_state=0, download_if_missing=True, return_X_y=False, ): """Load the Olivetti faces data-set from AT&T (classification). Download it if necessary. ================= ===================== Classes 40 Samples total 400 Dimensionality 4096 Features real, between 0 and 1 ================= ===================== Read more in the :ref:`User Guide `. Parameters ---------- data_home : str or path-like, default=None Specify another download and cache folder for the datasets. By default all scikit-learn data is stored in '~/scikit_learn_data' subfolders. shuffle : bool, default=False If True the order of the dataset is shuffled to avoid having images of the same person grouped. random_state : int, RandomState instance or None, default=0 Determines random number generation for dataset shuffling. Pass an int for reproducible output across multiple function calls. See :term:`Glossary `. download_if_missing : bool, default=True If False, raise an OSError if the data is not locally available instead of trying to download the data from the source site. return_X_y : bool, default=False If True, returns `(data, target)` instead of a `Bunch` object. See below for more information about the `data` and `target` object. .. versionadded:: 0.22 Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data: ndarray, shape (400, 4096) Each row corresponds to a ravelled face image of original size 64 x 64 pixels. images : ndarray, shape (400, 64, 64) Each row is a face image corresponding to one of the 40 subjects of the dataset. target : ndarray, shape (400,) Labels associated to each face image. Those labels are ranging from 0-39 and correspond to the Subject IDs. DESCR : str Description of the modified Olivetti Faces Dataset. (data, target) : tuple if `return_X_y=True` Tuple with the `data` and `target` objects described above. .. versionadded:: 0.22 """ data_home = get_data_home(data_home=data_home) if not exists(data_home): makedirs(data_home) filepath = _pkl_filepath(data_home, "olivetti.pkz") if not exists(filepath): if not download_if_missing: raise OSError("Data not found and `download_if_missing` is False") print("downloading Olivetti faces from %s to %s" % (FACES.url, data_home)) mat_path = _fetch_remote(FACES, dirname=data_home) mfile = loadmat(file_name=mat_path) # delete raw .mat data remove(mat_path) faces = mfile["faces"].T.copy() joblib.dump(faces, filepath, compress=6) del mfile else: faces = joblib.load(filepath) # We want floating point data, but float32 is enough (there is only # one byte of precision in the original uint8s anyway) faces = np.float32(faces) faces = faces - faces.min() faces /= faces.max() faces = faces.reshape((400, 64, 64)).transpose(0, 2, 1) # 10 images per class, 400 images total, each class is contiguous. target = np.array([i // 10 for i in range(400)]) if shuffle: random_state = check_random_state(random_state) order = random_state.permutation(len(faces)) faces = faces[order] target = target[order] faces_vectorized = faces.reshape(len(faces), -1) fdescr = load_descr("olivetti_faces.rst") if return_X_y: return faces_vectorized, target return Bunch(data=faces_vectorized, images=faces, target=target, DESCR=fdescr)