""" This module contains the TreeGrower class. TreeGrower builds a regression tree fitting a Newton-Raphson step, based on the gradients and hessians of the training data. """ # Author: Nicolas Hug import numbers from heapq import heappop, heappush from timeit import default_timer as time import numpy as np from sklearn.utils._openmp_helpers import _openmp_effective_n_threads from ._bitset import set_raw_bitset_from_binned_bitset from .common import ( PREDICTOR_RECORD_DTYPE, X_BITSET_INNER_DTYPE, Y_DTYPE, MonotonicConstraint, ) from .histogram import HistogramBuilder from .predictor import TreePredictor from .splitting import Splitter from .utils import sum_parallel EPS = np.finfo(Y_DTYPE).eps # to avoid zero division errors class TreeNode: """Tree Node class used in TreeGrower. This isn't used for prediction purposes, only for training (see TreePredictor). Parameters ---------- depth : int The depth of the node, i.e. its distance from the root. sample_indices : ndarray of shape (n_samples_at_node,), dtype=np.uint32 The indices of the samples at the node. sum_gradients : float The sum of the gradients of the samples at the node. sum_hessians : float The sum of the hessians of the samples at the node. Attributes ---------- depth : int The depth of the node, i.e. its distance from the root. sample_indices : ndarray of shape (n_samples_at_node,), dtype=np.uint32 The indices of the samples at the node. sum_gradients : float The sum of the gradients of the samples at the node. sum_hessians : float The sum of the hessians of the samples at the node. split_info : SplitInfo or None The result of the split evaluation. is_leaf : bool True if node is a leaf left_child : TreeNode or None The left child of the node. None for leaves. right_child : TreeNode or None The right child of the node. None for leaves. value : float or None The value of the leaf, as computed in finalize_leaf(). None for non-leaf nodes. partition_start : int start position of the node's sample_indices in splitter.partition. partition_stop : int stop position of the node's sample_indices in splitter.partition. allowed_features : None or ndarray, dtype=int Indices of features allowed to split for children. interaction_cst_indices : None or list of ints Indices of the interaction sets that have to be applied on splits of child nodes. The fewer sets the stronger the constraint as fewer sets contain fewer features. children_lower_bound : float children_upper_bound : float """ split_info = None left_child = None right_child = None histograms = None # start and stop indices of the node in the splitter.partition # array. Concretely, # self.sample_indices = view(self.splitter.partition[start:stop]) # Please see the comments about splitter.partition and # splitter.split_indices for more info about this design. # These 2 attributes are only used in _update_raw_prediction, because we # need to iterate over the leaves and I don't know how to efficiently # store the sample_indices views because they're all of different sizes. partition_start = 0 partition_stop = 0 def __init__(self, depth, sample_indices, sum_gradients, sum_hessians, value=None): self.depth = depth self.sample_indices = sample_indices self.n_samples = sample_indices.shape[0] self.sum_gradients = sum_gradients self.sum_hessians = sum_hessians self.value = value self.is_leaf = False self.allowed_features = None self.interaction_cst_indices = None self.set_children_bounds(float("-inf"), float("+inf")) def set_children_bounds(self, lower, upper): """Set children values bounds to respect monotonic constraints.""" # These are bounds for the node's *children* values, not the node's # value. The bounds are used in the splitter when considering potential # left and right child. self.children_lower_bound = lower self.children_upper_bound = upper def __lt__(self, other_node): """Comparison for priority queue. Nodes with high gain are higher priority than nodes with low gain. heapq.heappush only need the '<' operator. heapq.heappop take the smallest item first (smaller is higher priority). Parameters ---------- other_node : TreeNode The node to compare with. """ return self.split_info.gain > other_node.split_info.gain class TreeGrower: """Tree grower class used to build a tree. The tree is fitted to predict the values of a Newton-Raphson step. The splits are considered in a best-first fashion, and the quality of a split is defined in splitting._split_gain. Parameters ---------- X_binned : ndarray of shape (n_samples, n_features), dtype=np.uint8 The binned input samples. Must be Fortran-aligned. gradients : ndarray of shape (n_samples,) The gradients of each training sample. Those are the gradients of the loss w.r.t the predictions, evaluated at iteration ``i - 1``. hessians : ndarray of shape (n_samples,) The hessians of each training sample. Those are the hessians of the loss w.r.t the predictions, evaluated at iteration ``i - 1``. max_leaf_nodes : int, default=None The maximum number of leaves for each tree. If None, there is no maximum limit. max_depth : int, default=None The maximum depth of each tree. The depth of a tree is the number of edges to go from the root to the deepest leaf. Depth isn't constrained by default. min_samples_leaf : int, default=20 The minimum number of samples per leaf. min_gain_to_split : float, default=0. The minimum gain needed to split a node. Splits with lower gain will be ignored. min_hessian_to_split : float, default=1e-3 The minimum sum of hessians needed in each node. Splits that result in at least one child having a sum of hessians less than ``min_hessian_to_split`` are discarded. n_bins : int, default=256 The total number of bins, including the bin for missing values. Used to define the shape of the histograms. n_bins_non_missing : ndarray, dtype=np.uint32, default=None For each feature, gives the number of bins actually used for non-missing values. For features with a lot of unique values, this is equal to ``n_bins - 1``. If it's an int, all features are considered to have the same number of bins. If None, all features are considered to have ``n_bins - 1`` bins. has_missing_values : bool or ndarray, dtype=bool, default=False Whether each feature contains missing values (in the training data). If it's a bool, the same value is used for all features. is_categorical : ndarray of bool of shape (n_features,), default=None Indicates categorical features. monotonic_cst : array-like of int of shape (n_features,), dtype=int, default=None Indicates the monotonic constraint to enforce on each feature. - 1: monotonic increase - 0: no constraint - -1: monotonic decrease Read more in the :ref:`User Guide `. interaction_cst : list of sets of integers, default=None List of interaction constraints. l2_regularization : float, default=0. The L2 regularization parameter. feature_fraction_per_split : float, default=1 Proportion of randomly chosen features in each and every node split. This is a form of regularization, smaller values make the trees weaker learners and might prevent overfitting. rng : Generator Numpy random Generator used for feature subsampling. shrinkage : float, default=1. The shrinkage parameter to apply to the leaves values, also known as learning rate. n_threads : int, default=None Number of OpenMP threads to use. `_openmp_effective_n_threads` is called to determine the effective number of threads use, which takes cgroups CPU quotes into account. See the docstring of `_openmp_effective_n_threads` for details. Attributes ---------- histogram_builder : HistogramBuilder splitter : Splitter root : TreeNode finalized_leaves : list of TreeNode splittable_nodes : list of TreeNode missing_values_bin_idx : int Equals n_bins - 1 n_categorical_splits : int n_features : int n_nodes : int total_find_split_time : float Time spent finding the best splits total_compute_hist_time : float Time spent computing histograms total_apply_split_time : float Time spent splitting nodes with_monotonic_cst : bool Whether there are monotonic constraints that apply. False iff monotonic_cst is None. """ def __init__( self, X_binned, gradients, hessians, max_leaf_nodes=None, max_depth=None, min_samples_leaf=20, min_gain_to_split=0.0, min_hessian_to_split=1e-3, n_bins=256, n_bins_non_missing=None, has_missing_values=False, is_categorical=None, monotonic_cst=None, interaction_cst=None, l2_regularization=0.0, feature_fraction_per_split=1.0, rng=np.random.default_rng(), shrinkage=1.0, n_threads=None, ): self._validate_parameters( X_binned, min_gain_to_split, min_hessian_to_split, ) n_threads = _openmp_effective_n_threads(n_threads) if n_bins_non_missing is None: n_bins_non_missing = n_bins - 1 if isinstance(n_bins_non_missing, numbers.Integral): n_bins_non_missing = np.array( [n_bins_non_missing] * X_binned.shape[1], dtype=np.uint32 ) else: n_bins_non_missing = np.asarray(n_bins_non_missing, dtype=np.uint32) if isinstance(has_missing_values, bool): has_missing_values = [has_missing_values] * X_binned.shape[1] has_missing_values = np.asarray(has_missing_values, dtype=np.uint8) # `monotonic_cst` validation is done in _validate_monotonic_cst # at the estimator level and therefore the following should not be # needed when using the public API. if monotonic_cst is None: monotonic_cst = np.full( shape=X_binned.shape[1], fill_value=MonotonicConstraint.NO_CST, dtype=np.int8, ) else: monotonic_cst = np.asarray(monotonic_cst, dtype=np.int8) self.with_monotonic_cst = np.any(monotonic_cst != MonotonicConstraint.NO_CST) if is_categorical is None: is_categorical = np.zeros(shape=X_binned.shape[1], dtype=np.uint8) else: is_categorical = np.asarray(is_categorical, dtype=np.uint8) if np.any( np.logical_and( is_categorical == 1, monotonic_cst != MonotonicConstraint.NO_CST ) ): raise ValueError("Categorical features cannot have monotonic constraints.") hessians_are_constant = hessians.shape[0] == 1 self.histogram_builder = HistogramBuilder( X_binned, n_bins, gradients, hessians, hessians_are_constant, n_threads ) missing_values_bin_idx = n_bins - 1 self.splitter = Splitter( X_binned=X_binned, n_bins_non_missing=n_bins_non_missing, missing_values_bin_idx=missing_values_bin_idx, has_missing_values=has_missing_values, is_categorical=is_categorical, monotonic_cst=monotonic_cst, l2_regularization=l2_regularization, min_hessian_to_split=min_hessian_to_split, min_samples_leaf=min_samples_leaf, min_gain_to_split=min_gain_to_split, hessians_are_constant=hessians_are_constant, feature_fraction_per_split=feature_fraction_per_split, rng=rng, n_threads=n_threads, ) self.X_binned = X_binned self.max_leaf_nodes = max_leaf_nodes self.max_depth = max_depth self.min_samples_leaf = min_samples_leaf self.min_gain_to_split = min_gain_to_split self.n_bins_non_missing = n_bins_non_missing self.missing_values_bin_idx = missing_values_bin_idx self.has_missing_values = has_missing_values self.is_categorical = is_categorical self.monotonic_cst = monotonic_cst self.interaction_cst = interaction_cst self.l2_regularization = l2_regularization self.shrinkage = shrinkage self.n_features = X_binned.shape[1] self.n_threads = n_threads self.splittable_nodes = [] self.finalized_leaves = [] self.total_find_split_time = 0.0 # time spent finding the best splits self.total_compute_hist_time = 0.0 # time spent computing histograms self.total_apply_split_time = 0.0 # time spent splitting nodes self.n_categorical_splits = 0 self._intilialize_root(gradients, hessians, hessians_are_constant) self.n_nodes = 1 def _validate_parameters( self, X_binned, min_gain_to_split, min_hessian_to_split, ): """Validate parameters passed to __init__. Also validate parameters passed to splitter. """ if X_binned.dtype != np.uint8: raise NotImplementedError("X_binned must be of type uint8.") if not X_binned.flags.f_contiguous: raise ValueError( "X_binned should be passed as Fortran contiguous " "array for maximum efficiency." ) if min_gain_to_split < 0: raise ValueError( "min_gain_to_split={} must be positive.".format(min_gain_to_split) ) if min_hessian_to_split < 0: raise ValueError( "min_hessian_to_split={} must be positive.".format(min_hessian_to_split) ) def grow(self): """Grow the tree, from root to leaves.""" while self.splittable_nodes: self.split_next() self._apply_shrinkage() def _apply_shrinkage(self): """Multiply leaves values by shrinkage parameter. This must be done at the very end of the growing process. If this were done during the growing process e.g. in finalize_leaf(), then a leaf would be shrunk but its sibling would potentially not be (if it's a non-leaf), which would lead to a wrong computation of the 'middle' value needed to enforce the monotonic constraints. """ for leaf in self.finalized_leaves: leaf.value *= self.shrinkage def _intilialize_root(self, gradients, hessians, hessians_are_constant): """Initialize root node and finalize it if needed.""" n_samples = self.X_binned.shape[0] depth = 0 sum_gradients = sum_parallel(gradients, self.n_threads) if self.histogram_builder.hessians_are_constant: sum_hessians = hessians[0] * n_samples else: sum_hessians = sum_parallel(hessians, self.n_threads) self.root = TreeNode( depth=depth, sample_indices=self.splitter.partition, sum_gradients=sum_gradients, sum_hessians=sum_hessians, value=0, ) self.root.partition_start = 0 self.root.partition_stop = n_samples if self.root.n_samples < 2 * self.min_samples_leaf: # Do not even bother computing any splitting statistics. self._finalize_leaf(self.root) return if sum_hessians < self.splitter.min_hessian_to_split: self._finalize_leaf(self.root) return if self.interaction_cst is not None: self.root.interaction_cst_indices = range(len(self.interaction_cst)) allowed_features = set().union(*self.interaction_cst) self.root.allowed_features = np.fromiter( allowed_features, dtype=np.uint32, count=len(allowed_features) ) tic = time() self.root.histograms = self.histogram_builder.compute_histograms_brute( self.root.sample_indices, self.root.allowed_features ) self.total_compute_hist_time += time() - tic tic = time() self._compute_best_split_and_push(self.root) self.total_find_split_time += time() - tic def _compute_best_split_and_push(self, node): """Compute the best possible split (SplitInfo) of a given node. Also push it in the heap of splittable nodes if gain isn't zero. The gain of a node is 0 if either all the leaves are pure (best gain = 0), or if no split would satisfy the constraints, (min_hessians_to_split, min_gain_to_split, min_samples_leaf) """ node.split_info = self.splitter.find_node_split( n_samples=node.n_samples, histograms=node.histograms, sum_gradients=node.sum_gradients, sum_hessians=node.sum_hessians, value=node.value, lower_bound=node.children_lower_bound, upper_bound=node.children_upper_bound, allowed_features=node.allowed_features, ) if node.split_info.gain <= 0: # no valid split self._finalize_leaf(node) else: heappush(self.splittable_nodes, node) def split_next(self): """Split the node with highest potential gain. Returns ------- left : TreeNode The resulting left child. right : TreeNode The resulting right child. """ # Consider the node with the highest loss reduction (a.k.a. gain) node = heappop(self.splittable_nodes) tic = time() ( sample_indices_left, sample_indices_right, right_child_pos, ) = self.splitter.split_indices(node.split_info, node.sample_indices) self.total_apply_split_time += time() - tic depth = node.depth + 1 n_leaf_nodes = len(self.finalized_leaves) + len(self.splittable_nodes) n_leaf_nodes += 2 left_child_node = TreeNode( depth, sample_indices_left, node.split_info.sum_gradient_left, node.split_info.sum_hessian_left, value=node.split_info.value_left, ) right_child_node = TreeNode( depth, sample_indices_right, node.split_info.sum_gradient_right, node.split_info.sum_hessian_right, value=node.split_info.value_right, ) node.right_child = right_child_node node.left_child = left_child_node # set start and stop indices left_child_node.partition_start = node.partition_start left_child_node.partition_stop = node.partition_start + right_child_pos right_child_node.partition_start = left_child_node.partition_stop right_child_node.partition_stop = node.partition_stop # set interaction constraints (the indices of the constraints sets) if self.interaction_cst is not None: # Calculate allowed_features and interaction_cst_indices only once. Child # nodes inherit them before they get split. ( left_child_node.allowed_features, left_child_node.interaction_cst_indices, ) = self._compute_interactions(node) right_child_node.interaction_cst_indices = ( left_child_node.interaction_cst_indices ) right_child_node.allowed_features = left_child_node.allowed_features if not self.has_missing_values[node.split_info.feature_idx]: # If no missing values are encountered at fit time, then samples # with missing values during predict() will go to whichever child # has the most samples. node.split_info.missing_go_to_left = ( left_child_node.n_samples > right_child_node.n_samples ) self.n_nodes += 2 self.n_categorical_splits += node.split_info.is_categorical if self.max_leaf_nodes is not None and n_leaf_nodes == self.max_leaf_nodes: self._finalize_leaf(left_child_node) self._finalize_leaf(right_child_node) self._finalize_splittable_nodes() return left_child_node, right_child_node if self.max_depth is not None and depth == self.max_depth: self._finalize_leaf(left_child_node) self._finalize_leaf(right_child_node) return left_child_node, right_child_node if left_child_node.n_samples < self.min_samples_leaf * 2: self._finalize_leaf(left_child_node) if right_child_node.n_samples < self.min_samples_leaf * 2: self._finalize_leaf(right_child_node) if self.with_monotonic_cst: # Set value bounds for respecting monotonic constraints # See test_nodes_values() for details if ( self.monotonic_cst[node.split_info.feature_idx] == MonotonicConstraint.NO_CST ): lower_left = lower_right = node.children_lower_bound upper_left = upper_right = node.children_upper_bound else: mid = (left_child_node.value + right_child_node.value) / 2 if ( self.monotonic_cst[node.split_info.feature_idx] == MonotonicConstraint.POS ): lower_left, upper_left = node.children_lower_bound, mid lower_right, upper_right = mid, node.children_upper_bound else: # NEG lower_left, upper_left = mid, node.children_upper_bound lower_right, upper_right = node.children_lower_bound, mid left_child_node.set_children_bounds(lower_left, upper_left) right_child_node.set_children_bounds(lower_right, upper_right) # Compute histograms of children, and compute their best possible split # (if needed) should_split_left = not left_child_node.is_leaf should_split_right = not right_child_node.is_leaf if should_split_left or should_split_right: # We will compute the histograms of both nodes even if one of them # is a leaf, since computing the second histogram is very cheap # (using histogram subtraction). n_samples_left = left_child_node.sample_indices.shape[0] n_samples_right = right_child_node.sample_indices.shape[0] if n_samples_left < n_samples_right: smallest_child = left_child_node largest_child = right_child_node else: smallest_child = right_child_node largest_child = left_child_node # We use the brute O(n_samples) method on the child that has the # smallest number of samples, and the subtraction trick O(n_bins) # on the other one. # Note that both left and right child have the same allowed_features. tic = time() smallest_child.histograms = self.histogram_builder.compute_histograms_brute( smallest_child.sample_indices, smallest_child.allowed_features ) largest_child.histograms = ( self.histogram_builder.compute_histograms_subtraction( node.histograms, smallest_child.histograms, smallest_child.allowed_features, ) ) # node.histograms is reused in largest_child.histograms. To break cyclic # memory references and help garbage collection, we set it to None. node.histograms = None self.total_compute_hist_time += time() - tic tic = time() if should_split_left: self._compute_best_split_and_push(left_child_node) if should_split_right: self._compute_best_split_and_push(right_child_node) self.total_find_split_time += time() - tic # Release memory used by histograms as they are no longer needed # for leaf nodes since they won't be split. for child in (left_child_node, right_child_node): if child.is_leaf: del child.histograms # Release memory used by histograms as they are no longer needed for # internal nodes once children histograms have been computed. del node.histograms return left_child_node, right_child_node def _compute_interactions(self, node): r"""Compute features allowed by interactions to be inherited by child nodes. Example: Assume constraints [{0, 1}, {1, 2}]. 1 <- Both constraint groups could be applied from now on / \ 1 2 <- Left split still fulfills both constraint groups. / \ / \ Right split at feature 2 has only group {1, 2} from now on. LightGBM uses the same logic for overlapping groups. See https://github.com/microsoft/LightGBM/issues/4481 for details. Parameters: ---------- node : TreeNode A node that might have children. Based on its feature_idx, the interaction constraints for possible child nodes are computed. Returns ------- allowed_features : ndarray, dtype=uint32 Indices of features allowed to split for children. interaction_cst_indices : list of ints Indices of the interaction sets that have to be applied on splits of child nodes. The fewer sets the stronger the constraint as fewer sets contain fewer features. """ # Note: # - Case of no interactions is already captured before function call. # - This is for nodes that are already split and have a # node.split_info.feature_idx. allowed_features = set() interaction_cst_indices = [] for i in node.interaction_cst_indices: if node.split_info.feature_idx in self.interaction_cst[i]: interaction_cst_indices.append(i) allowed_features.update(self.interaction_cst[i]) return ( np.fromiter(allowed_features, dtype=np.uint32, count=len(allowed_features)), interaction_cst_indices, ) def _finalize_leaf(self, node): """Make node a leaf of the tree being grown.""" node.is_leaf = True self.finalized_leaves.append(node) def _finalize_splittable_nodes(self): """Transform all splittable nodes into leaves. Used when some constraint is met e.g. maximum number of leaves or maximum depth.""" while len(self.splittable_nodes) > 0: node = self.splittable_nodes.pop() self._finalize_leaf(node) def make_predictor(self, binning_thresholds): """Make a TreePredictor object out of the current tree. Parameters ---------- binning_thresholds : array-like of floats Corresponds to the bin_thresholds_ attribute of the BinMapper. For each feature, this stores: - the bin frontiers for continuous features - the unique raw category values for categorical features Returns ------- A TreePredictor object. """ predictor_nodes = np.zeros(self.n_nodes, dtype=PREDICTOR_RECORD_DTYPE) binned_left_cat_bitsets = np.zeros( (self.n_categorical_splits, 8), dtype=X_BITSET_INNER_DTYPE ) raw_left_cat_bitsets = np.zeros( (self.n_categorical_splits, 8), dtype=X_BITSET_INNER_DTYPE ) _fill_predictor_arrays( predictor_nodes, binned_left_cat_bitsets, raw_left_cat_bitsets, self.root, binning_thresholds, self.n_bins_non_missing, ) return TreePredictor( predictor_nodes, binned_left_cat_bitsets, raw_left_cat_bitsets ) def _fill_predictor_arrays( predictor_nodes, binned_left_cat_bitsets, raw_left_cat_bitsets, grower_node, binning_thresholds, n_bins_non_missing, next_free_node_idx=0, next_free_bitset_idx=0, ): """Helper used in make_predictor to set the TreePredictor fields.""" node = predictor_nodes[next_free_node_idx] node["count"] = grower_node.n_samples node["depth"] = grower_node.depth if grower_node.split_info is not None: node["gain"] = grower_node.split_info.gain else: node["gain"] = -1 node["value"] = grower_node.value if grower_node.is_leaf: # Leaf node node["is_leaf"] = True return next_free_node_idx + 1, next_free_bitset_idx split_info = grower_node.split_info feature_idx, bin_idx = split_info.feature_idx, split_info.bin_idx node["feature_idx"] = feature_idx node["bin_threshold"] = bin_idx node["missing_go_to_left"] = split_info.missing_go_to_left node["is_categorical"] = split_info.is_categorical if split_info.bin_idx == n_bins_non_missing[feature_idx] - 1: # Split is on the last non-missing bin: it's a "split on nans". # All nans go to the right, the rest go to the left. # Note: for categorical splits, bin_idx is 0 and we rely on the bitset node["num_threshold"] = np.inf elif split_info.is_categorical: categories = binning_thresholds[feature_idx] node["bitset_idx"] = next_free_bitset_idx binned_left_cat_bitsets[next_free_bitset_idx] = split_info.left_cat_bitset set_raw_bitset_from_binned_bitset( raw_left_cat_bitsets[next_free_bitset_idx], split_info.left_cat_bitset, categories, ) next_free_bitset_idx += 1 else: node["num_threshold"] = binning_thresholds[feature_idx][bin_idx] next_free_node_idx += 1 node["left"] = next_free_node_idx next_free_node_idx, next_free_bitset_idx = _fill_predictor_arrays( predictor_nodes, binned_left_cat_bitsets, raw_left_cat_bitsets, grower_node.left_child, binning_thresholds=binning_thresholds, n_bins_non_missing=n_bins_non_missing, next_free_node_idx=next_free_node_idx, next_free_bitset_idx=next_free_bitset_idx, ) node["right"] = next_free_node_idx return _fill_predictor_arrays( predictor_nodes, binned_left_cat_bitsets, raw_left_cat_bitsets, grower_node.right_child, binning_thresholds=binning_thresholds, n_bins_non_missing=n_bins_non_missing, next_free_node_idx=next_free_node_idx, next_free_bitset_idx=next_free_bitset_idx, )