import numpy as np import pytest from numpy.testing import assert_array_equal from sklearn.ensemble._hist_gradient_boosting.common import ( G_H_DTYPE, HISTOGRAM_DTYPE, X_BINNED_DTYPE, MonotonicConstraint, ) from sklearn.ensemble._hist_gradient_boosting.histogram import HistogramBuilder from sklearn.ensemble._hist_gradient_boosting.splitting import ( Splitter, compute_node_value, ) from sklearn.utils._openmp_helpers import _openmp_effective_n_threads from sklearn.utils._testing import skip_if_32bit n_threads = _openmp_effective_n_threads() @pytest.mark.parametrize("n_bins", [3, 32, 256]) def test_histogram_split(n_bins): rng = np.random.RandomState(42) feature_idx = 0 l2_regularization = 0 min_hessian_to_split = 1e-3 min_samples_leaf = 1 min_gain_to_split = 0.0 X_binned = np.asfortranarray( rng.randint(0, n_bins - 1, size=(int(1e4), 1)), dtype=X_BINNED_DTYPE ) binned_feature = X_binned.T[feature_idx] sample_indices = np.arange(binned_feature.shape[0], dtype=np.uint32) ordered_hessians = np.ones_like(binned_feature, dtype=G_H_DTYPE) all_hessians = ordered_hessians sum_hessians = all_hessians.sum() hessians_are_constant = False for true_bin in range(1, n_bins - 2): for sign in [-1, 1]: ordered_gradients = np.full_like(binned_feature, sign, dtype=G_H_DTYPE) ordered_gradients[binned_feature <= true_bin] *= -1 all_gradients = ordered_gradients sum_gradients = all_gradients.sum() builder = HistogramBuilder( X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant, n_threads, ) n_bins_non_missing = np.array( [n_bins - 1] * X_binned.shape[1], dtype=np.uint32 ) has_missing_values = np.array([False] * X_binned.shape[1], dtype=np.uint8) monotonic_cst = np.array( [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8 ) is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8) missing_values_bin_idx = n_bins - 1 splitter = Splitter( X_binned, n_bins_non_missing, missing_values_bin_idx, has_missing_values, is_categorical, monotonic_cst, l2_regularization, min_hessian_to_split, min_samples_leaf, min_gain_to_split, hessians_are_constant, ) histograms = builder.compute_histograms_brute(sample_indices) value = compute_node_value( sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization ) split_info = splitter.find_node_split( sample_indices.shape[0], histograms, sum_gradients, sum_hessians, value ) assert split_info.bin_idx == true_bin assert split_info.gain >= 0 assert split_info.feature_idx == feature_idx assert ( split_info.n_samples_left + split_info.n_samples_right == sample_indices.shape[0] ) # Constant hessian: 1. per sample. assert split_info.n_samples_left == split_info.sum_hessian_left @skip_if_32bit @pytest.mark.parametrize("constant_hessian", [True, False]) def test_gradient_and_hessian_sanity(constant_hessian): # This test checks that the values of gradients and hessians are # consistent in different places: # - in split_info: si.sum_gradient_left + si.sum_gradient_right must be # equal to the gradient at the node. Same for hessians. # - in the histograms: summing 'sum_gradients' over the bins must be # constant across all features, and those sums must be equal to the # node's gradient. Same for hessians. rng = np.random.RandomState(42) n_bins = 10 n_features = 20 n_samples = 500 l2_regularization = 0.0 min_hessian_to_split = 1e-3 min_samples_leaf = 1 min_gain_to_split = 0.0 X_binned = rng.randint( 0, n_bins, size=(n_samples, n_features), dtype=X_BINNED_DTYPE ) X_binned = np.asfortranarray(X_binned) sample_indices = np.arange(n_samples, dtype=np.uint32) all_gradients = rng.randn(n_samples).astype(G_H_DTYPE) sum_gradients = all_gradients.sum() if constant_hessian: all_hessians = np.ones(1, dtype=G_H_DTYPE) sum_hessians = 1 * n_samples else: all_hessians = rng.lognormal(size=n_samples).astype(G_H_DTYPE) sum_hessians = all_hessians.sum() builder = HistogramBuilder( X_binned, n_bins, all_gradients, all_hessians, constant_hessian, n_threads ) n_bins_non_missing = np.array([n_bins - 1] * X_binned.shape[1], dtype=np.uint32) has_missing_values = np.array([False] * X_binned.shape[1], dtype=np.uint8) monotonic_cst = np.array( [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8 ) is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8) missing_values_bin_idx = n_bins - 1 splitter = Splitter( X_binned, n_bins_non_missing, missing_values_bin_idx, has_missing_values, is_categorical, monotonic_cst, l2_regularization, min_hessian_to_split, min_samples_leaf, min_gain_to_split, constant_hessian, ) hists_parent = builder.compute_histograms_brute(sample_indices) value_parent = compute_node_value( sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization ) si_parent = splitter.find_node_split( n_samples, hists_parent, sum_gradients, sum_hessians, value_parent ) sample_indices_left, sample_indices_right, _ = splitter.split_indices( si_parent, sample_indices ) hists_left = builder.compute_histograms_brute(sample_indices_left) value_left = compute_node_value( si_parent.sum_gradient_left, si_parent.sum_hessian_left, -np.inf, np.inf, l2_regularization, ) hists_right = builder.compute_histograms_brute(sample_indices_right) value_right = compute_node_value( si_parent.sum_gradient_right, si_parent.sum_hessian_right, -np.inf, np.inf, l2_regularization, ) si_left = splitter.find_node_split( n_samples, hists_left, si_parent.sum_gradient_left, si_parent.sum_hessian_left, value_left, ) si_right = splitter.find_node_split( n_samples, hists_right, si_parent.sum_gradient_right, si_parent.sum_hessian_right, value_right, ) # make sure that si.sum_gradient_left + si.sum_gradient_right have their # expected value, same for hessians for si, indices in ( (si_parent, sample_indices), (si_left, sample_indices_left), (si_right, sample_indices_right), ): gradient = si.sum_gradient_right + si.sum_gradient_left expected_gradient = all_gradients[indices].sum() hessian = si.sum_hessian_right + si.sum_hessian_left if constant_hessian: expected_hessian = indices.shape[0] * all_hessians[0] else: expected_hessian = all_hessians[indices].sum() assert np.isclose(gradient, expected_gradient) assert np.isclose(hessian, expected_hessian) # make sure sum of gradients in histograms are the same for all features, # and make sure they're equal to their expected value hists_parent = np.asarray(hists_parent, dtype=HISTOGRAM_DTYPE) hists_left = np.asarray(hists_left, dtype=HISTOGRAM_DTYPE) hists_right = np.asarray(hists_right, dtype=HISTOGRAM_DTYPE) for hists, indices in ( (hists_parent, sample_indices), (hists_left, sample_indices_left), (hists_right, sample_indices_right), ): # note: gradients and hessians have shape (n_features,), # we're comparing them to *scalars*. This has the benefit of also # making sure that all the entries are equal across features. gradients = hists["sum_gradients"].sum(axis=1) # shape = (n_features,) expected_gradient = all_gradients[indices].sum() # scalar hessians = hists["sum_hessians"].sum(axis=1) if constant_hessian: # 0 is not the actual hessian, but it's not computed in this case expected_hessian = 0.0 else: expected_hessian = all_hessians[indices].sum() assert np.allclose(gradients, expected_gradient) assert np.allclose(hessians, expected_hessian) def test_split_indices(): # Check that split_indices returns the correct splits and that # splitter.partition is consistent with what is returned. rng = np.random.RandomState(421) n_bins = 5 n_samples = 10 l2_regularization = 0.0 min_hessian_to_split = 1e-3 min_samples_leaf = 1 min_gain_to_split = 0.0 # split will happen on feature 1 and on bin 3 X_binned = [ [0, 0], [0, 3], [0, 4], [0, 0], [0, 0], [0, 0], [0, 0], [0, 4], [0, 0], [0, 4], ] X_binned = np.asfortranarray(X_binned, dtype=X_BINNED_DTYPE) sample_indices = np.arange(n_samples, dtype=np.uint32) all_gradients = rng.randn(n_samples).astype(G_H_DTYPE) all_hessians = np.ones(1, dtype=G_H_DTYPE) sum_gradients = all_gradients.sum() sum_hessians = 1 * n_samples hessians_are_constant = True builder = HistogramBuilder( X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant, n_threads ) n_bins_non_missing = np.array([n_bins] * X_binned.shape[1], dtype=np.uint32) has_missing_values = np.array([False] * X_binned.shape[1], dtype=np.uint8) monotonic_cst = np.array( [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8 ) is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8) missing_values_bin_idx = n_bins - 1 splitter = Splitter( X_binned, n_bins_non_missing, missing_values_bin_idx, has_missing_values, is_categorical, monotonic_cst, l2_regularization, min_hessian_to_split, min_samples_leaf, min_gain_to_split, hessians_are_constant, ) assert np.all(sample_indices == splitter.partition) histograms = builder.compute_histograms_brute(sample_indices) value = compute_node_value( sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization ) si_root = splitter.find_node_split( n_samples, histograms, sum_gradients, sum_hessians, value ) # sanity checks for best split assert si_root.feature_idx == 1 assert si_root.bin_idx == 3 samples_left, samples_right, position_right = splitter.split_indices( si_root, splitter.partition ) assert set(samples_left) == set([0, 1, 3, 4, 5, 6, 8]) assert set(samples_right) == set([2, 7, 9]) assert list(samples_left) == list(splitter.partition[:position_right]) assert list(samples_right) == list(splitter.partition[position_right:]) # Check that the resulting split indices sizes are consistent with the # count statistics anticipated when looking for the best split. assert samples_left.shape[0] == si_root.n_samples_left assert samples_right.shape[0] == si_root.n_samples_right def test_min_gain_to_split(): # Try to split a pure node (all gradients are equal, same for hessians) # with min_gain_to_split = 0 and make sure that the node is not split (best # possible gain = -1). Note: before the strict inequality comparison, this # test would fail because the node would be split with a gain of 0. rng = np.random.RandomState(42) l2_regularization = 0 min_hessian_to_split = 0 min_samples_leaf = 1 min_gain_to_split = 0.0 n_bins = 255 n_samples = 100 X_binned = np.asfortranarray( rng.randint(0, n_bins, size=(n_samples, 1)), dtype=X_BINNED_DTYPE ) binned_feature = X_binned[:, 0] sample_indices = np.arange(n_samples, dtype=np.uint32) all_hessians = np.ones_like(binned_feature, dtype=G_H_DTYPE) all_gradients = np.ones_like(binned_feature, dtype=G_H_DTYPE) sum_gradients = all_gradients.sum() sum_hessians = all_hessians.sum() hessians_are_constant = False builder = HistogramBuilder( X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant, n_threads ) n_bins_non_missing = np.array([n_bins - 1] * X_binned.shape[1], dtype=np.uint32) has_missing_values = np.array([False] * X_binned.shape[1], dtype=np.uint8) monotonic_cst = np.array( [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8 ) is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8) missing_values_bin_idx = n_bins - 1 splitter = Splitter( X_binned, n_bins_non_missing, missing_values_bin_idx, has_missing_values, is_categorical, monotonic_cst, l2_regularization, min_hessian_to_split, min_samples_leaf, min_gain_to_split, hessians_are_constant, ) histograms = builder.compute_histograms_brute(sample_indices) value = compute_node_value( sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization ) split_info = splitter.find_node_split( n_samples, histograms, sum_gradients, sum_hessians, value ) assert split_info.gain == -1 @pytest.mark.parametrize( ( "X_binned, all_gradients, has_missing_values, n_bins_non_missing, " " expected_split_on_nan, expected_bin_idx, expected_go_to_left" ), [ # basic sanity check with no missing values: given the gradient # values, the split must occur on bin_idx=3 ( [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], # X_binned [1, 1, 1, 1, 5, 5, 5, 5, 5, 5], # gradients False, # no missing values 10, # n_bins_non_missing False, # don't split on nans 3, # expected_bin_idx "not_applicable", ), # We replace 2 samples by NaNs (bin_idx=8) # These 2 samples were mapped to the left node before, so they should # be mapped to left node again # Notice how the bin_idx threshold changes from 3 to 1. ( [8, 0, 1, 8, 2, 3, 4, 5, 6, 7], # 8 <=> missing [1, 1, 1, 1, 5, 5, 5, 5, 5, 5], True, # missing values 8, # n_bins_non_missing False, # don't split on nans 1, # cut on bin_idx=1 True, ), # missing values go to left # same as above, but with non-consecutive missing_values_bin ( [9, 0, 1, 9, 2, 3, 4, 5, 6, 7], # 9 <=> missing [1, 1, 1, 1, 5, 5, 5, 5, 5, 5], True, # missing values 8, # n_bins_non_missing False, # don't split on nans 1, # cut on bin_idx=1 True, ), # missing values go to left # this time replacing 2 samples that were on the right. ( [0, 1, 2, 3, 8, 4, 8, 5, 6, 7], # 8 <=> missing [1, 1, 1, 1, 5, 5, 5, 5, 5, 5], True, # missing values 8, # n_bins_non_missing False, # don't split on nans 3, # cut on bin_idx=3 (like in first case) False, ), # missing values go to right # same as above, but with non-consecutive missing_values_bin ( [0, 1, 2, 3, 9, 4, 9, 5, 6, 7], # 9 <=> missing [1, 1, 1, 1, 5, 5, 5, 5, 5, 5], True, # missing values 8, # n_bins_non_missing False, # don't split on nans 3, # cut on bin_idx=3 (like in first case) False, ), # missing values go to right # For the following cases, split_on_nans is True (we replace all of # the samples with nans, instead of just 2). ( [0, 1, 2, 3, 4, 4, 4, 4, 4, 4], # 4 <=> missing [1, 1, 1, 1, 5, 5, 5, 5, 5, 5], True, # missing values 4, # n_bins_non_missing True, # split on nans 3, # cut on bin_idx=3 False, ), # missing values go to right # same as above, but with non-consecutive missing_values_bin ( [0, 1, 2, 3, 9, 9, 9, 9, 9, 9], # 9 <=> missing [1, 1, 1, 1, 1, 1, 5, 5, 5, 5], True, # missing values 4, # n_bins_non_missing True, # split on nans 3, # cut on bin_idx=3 False, ), # missing values go to right ( [6, 6, 6, 6, 0, 1, 2, 3, 4, 5], # 6 <=> missing [1, 1, 1, 1, 5, 5, 5, 5, 5, 5], True, # missing values 6, # n_bins_non_missing True, # split on nans 5, # cut on bin_idx=5 False, ), # missing values go to right # same as above, but with non-consecutive missing_values_bin ( [9, 9, 9, 9, 0, 1, 2, 3, 4, 5], # 9 <=> missing [1, 1, 1, 1, 5, 5, 5, 5, 5, 5], True, # missing values 6, # n_bins_non_missing True, # split on nans 5, # cut on bin_idx=5 False, ), # missing values go to right ], ) def test_splitting_missing_values( X_binned, all_gradients, has_missing_values, n_bins_non_missing, expected_split_on_nan, expected_bin_idx, expected_go_to_left, ): # Make sure missing values are properly supported. # we build an artificial example with gradients such that the best split # is on bin_idx=3, when there are no missing values. # Then we introduce missing values and: # - make sure the chosen bin is correct (find_best_bin()): it's # still the same split, even though the index of the bin may change # - make sure the missing values are mapped to the correct child # (split_indices()) n_bins = max(X_binned) + 1 n_samples = len(X_binned) l2_regularization = 0.0 min_hessian_to_split = 1e-3 min_samples_leaf = 1 min_gain_to_split = 0.0 sample_indices = np.arange(n_samples, dtype=np.uint32) X_binned = np.array(X_binned, dtype=X_BINNED_DTYPE).reshape(-1, 1) X_binned = np.asfortranarray(X_binned) all_gradients = np.array(all_gradients, dtype=G_H_DTYPE) has_missing_values = np.array([has_missing_values], dtype=np.uint8) all_hessians = np.ones(1, dtype=G_H_DTYPE) sum_gradients = all_gradients.sum() sum_hessians = 1 * n_samples hessians_are_constant = True builder = HistogramBuilder( X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant, n_threads ) n_bins_non_missing = np.array([n_bins_non_missing], dtype=np.uint32) monotonic_cst = np.array( [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8 ) is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8) missing_values_bin_idx = n_bins - 1 splitter = Splitter( X_binned, n_bins_non_missing, missing_values_bin_idx, has_missing_values, is_categorical, monotonic_cst, l2_regularization, min_hessian_to_split, min_samples_leaf, min_gain_to_split, hessians_are_constant, ) histograms = builder.compute_histograms_brute(sample_indices) value = compute_node_value( sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization ) split_info = splitter.find_node_split( n_samples, histograms, sum_gradients, sum_hessians, value ) assert split_info.bin_idx == expected_bin_idx if has_missing_values: assert split_info.missing_go_to_left == expected_go_to_left split_on_nan = split_info.bin_idx == n_bins_non_missing[0] - 1 assert split_on_nan == expected_split_on_nan # Make sure the split is properly computed. # This also make sure missing values are properly assigned to the correct # child in split_indices() samples_left, samples_right, _ = splitter.split_indices( split_info, splitter.partition ) if not expected_split_on_nan: # When we don't split on nans, the split should always be the same. assert set(samples_left) == set([0, 1, 2, 3]) assert set(samples_right) == set([4, 5, 6, 7, 8, 9]) else: # When we split on nans, samples with missing values are always mapped # to the right child. missing_samples_indices = np.flatnonzero( np.array(X_binned) == missing_values_bin_idx ) non_missing_samples_indices = np.flatnonzero( np.array(X_binned) != missing_values_bin_idx ) assert set(samples_right) == set(missing_samples_indices) assert set(samples_left) == set(non_missing_samples_indices) @pytest.mark.parametrize( "X_binned, has_missing_values, n_bins_non_missing, ", [ # one category ([0] * 20, False, 1), # all categories appear less than MIN_CAT_SUPPORT (hardcoded to 10) ([0] * 9 + [1] * 8, False, 2), # only one category appears more than MIN_CAT_SUPPORT ([0] * 12 + [1] * 8, False, 2), # missing values + category appear less than MIN_CAT_SUPPORT # 9 is missing ([0] * 9 + [1] * 8 + [9] * 4, True, 2), # no non-missing category ([9] * 11, True, 0), ], ) def test_splitting_categorical_cat_smooth( X_binned, has_missing_values, n_bins_non_missing ): # Checks categorical splits are correct when the MIN_CAT_SUPPORT constraint # isn't respected: there are no splits n_bins = max(X_binned) + 1 n_samples = len(X_binned) X_binned = np.array([X_binned], dtype=X_BINNED_DTYPE).T X_binned = np.asfortranarray(X_binned) l2_regularization = 0.0 min_hessian_to_split = 1e-3 min_samples_leaf = 1 min_gain_to_split = 0.0 sample_indices = np.arange(n_samples, dtype=np.uint32) all_gradients = np.ones(n_samples, dtype=G_H_DTYPE) has_missing_values = np.array([has_missing_values], dtype=np.uint8) all_hessians = np.ones(1, dtype=G_H_DTYPE) sum_gradients = all_gradients.sum() sum_hessians = n_samples hessians_are_constant = True builder = HistogramBuilder( X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant, n_threads ) n_bins_non_missing = np.array([n_bins_non_missing], dtype=np.uint32) monotonic_cst = np.array( [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8 ) is_categorical = np.ones_like(monotonic_cst, dtype=np.uint8) missing_values_bin_idx = n_bins - 1 splitter = Splitter( X_binned, n_bins_non_missing, missing_values_bin_idx, has_missing_values, is_categorical, monotonic_cst, l2_regularization, min_hessian_to_split, min_samples_leaf, min_gain_to_split, hessians_are_constant, ) histograms = builder.compute_histograms_brute(sample_indices) value = compute_node_value( sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization ) split_info = splitter.find_node_split( n_samples, histograms, sum_gradients, sum_hessians, value ) # no split found assert split_info.gain == -1 def _assert_categories_equals_bitset(categories, bitset): # assert that the bitset exactly corresponds to the categories # bitset is assumed to be an array of 8 uint32 elements # form bitset from threshold expected_bitset = np.zeros(8, dtype=np.uint32) for cat in categories: idx = cat // 32 shift = cat % 32 expected_bitset[idx] |= 1 << shift # check for equality assert_array_equal(expected_bitset, bitset) @pytest.mark.parametrize( ( "X_binned, all_gradients, expected_categories_left, n_bins_non_missing," "missing_values_bin_idx, has_missing_values, expected_missing_go_to_left" ), [ # 4 categories ( [0, 1, 2, 3] * 11, # X_binned [10, 1, 10, 10] * 11, # all_gradients [1], # expected_categories_left 4, # n_bins_non_missing 4, # missing_values_bin_idx False, # has_missing_values None, ), # expected_missing_go_to_left, unchecked # Make sure that the categories that are on the right (second half) of # the sorted categories array can still go in the left child. In this # case, the best split was found when scanning from right to left. ( [0, 1, 2, 3] * 11, # X_binned [10, 10, 10, 1] * 11, # all_gradients [3], # expected_categories_left 4, # n_bins_non_missing 4, # missing_values_bin_idx False, # has_missing_values None, ), # expected_missing_go_to_left, unchecked # categories that don't respect MIN_CAT_SUPPORT (cat 4) are always # mapped to the right child ( [0, 1, 2, 3] * 11 + [4] * 5, # X_binned [10, 10, 10, 1] * 11 + [10] * 5, # all_gradients [3], # expected_categories_left 4, # n_bins_non_missing 4, # missing_values_bin_idx False, # has_missing_values None, ), # expected_missing_go_to_left, unchecked # categories that don't respect MIN_CAT_SUPPORT are always mapped to # the right child: in this case a more sensible split could have been # 3, 4 - 0, 1, 2 # But the split is still 3 - 0, 1, 2, 4. this is because we only scan # up to the middle of the sorted category array (0, 1, 2, 3), and # because we exclude cat 4 in this array. ( [0, 1, 2, 3] * 11 + [4] * 5, # X_binned [10, 10, 10, 1] * 11 + [1] * 5, # all_gradients [3], # expected_categories_left 4, # n_bins_non_missing 4, # missing_values_bin_idx False, # has_missing_values None, ), # expected_missing_go_to_left, unchecked # 4 categories with missing values that go to the right ( [0, 1, 2] * 11 + [9] * 11, # X_binned [10, 1, 10] * 11 + [10] * 11, # all_gradients [1], # expected_categories_left 3, # n_bins_non_missing 9, # missing_values_bin_idx True, # has_missing_values False, ), # expected_missing_go_to_left # 4 categories with missing values that go to the left ( [0, 1, 2] * 11 + [9] * 11, # X_binned [10, 1, 10] * 11 + [1] * 11, # all_gradients [1, 9], # expected_categories_left 3, # n_bins_non_missing 9, # missing_values_bin_idx True, # has_missing_values True, ), # expected_missing_go_to_left # split is on the missing value ( [0, 1, 2, 3, 4] * 11 + [255] * 12, # X_binned [10, 10, 10, 10, 10] * 11 + [1] * 12, # all_gradients [255], # expected_categories_left 5, # n_bins_non_missing 255, # missing_values_bin_idx True, # has_missing_values True, ), # expected_missing_go_to_left # split on even categories ( list(range(60)) * 12, # X_binned [10, 1] * 360, # all_gradients list(range(1, 60, 2)), # expected_categories_left 59, # n_bins_non_missing 59, # missing_values_bin_idx True, # has_missing_values True, ), # expected_missing_go_to_left # split on every 8 categories ( list(range(256)) * 12, # X_binned [10, 10, 10, 10, 10, 10, 10, 1] * 384, # all_gradients list(range(7, 256, 8)), # expected_categories_left 255, # n_bins_non_missing 255, # missing_values_bin_idx True, # has_missing_values True, ), # expected_missing_go_to_left ], ) def test_splitting_categorical_sanity( X_binned, all_gradients, expected_categories_left, n_bins_non_missing, missing_values_bin_idx, has_missing_values, expected_missing_go_to_left, ): # Tests various combinations of categorical splits n_samples = len(X_binned) n_bins = max(X_binned) + 1 X_binned = np.array(X_binned, dtype=X_BINNED_DTYPE).reshape(-1, 1) X_binned = np.asfortranarray(X_binned) l2_regularization = 0.0 min_hessian_to_split = 1e-3 min_samples_leaf = 1 min_gain_to_split = 0.0 sample_indices = np.arange(n_samples, dtype=np.uint32) all_gradients = np.array(all_gradients, dtype=G_H_DTYPE) all_hessians = np.ones(1, dtype=G_H_DTYPE) has_missing_values = np.array([has_missing_values], dtype=np.uint8) sum_gradients = all_gradients.sum() sum_hessians = n_samples hessians_are_constant = True builder = HistogramBuilder( X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant, n_threads ) n_bins_non_missing = np.array([n_bins_non_missing], dtype=np.uint32) monotonic_cst = np.array( [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8 ) is_categorical = np.ones_like(monotonic_cst, dtype=np.uint8) splitter = Splitter( X_binned, n_bins_non_missing, missing_values_bin_idx, has_missing_values, is_categorical, monotonic_cst, l2_regularization, min_hessian_to_split, min_samples_leaf, min_gain_to_split, hessians_are_constant, ) histograms = builder.compute_histograms_brute(sample_indices) value = compute_node_value( sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization ) split_info = splitter.find_node_split( n_samples, histograms, sum_gradients, sum_hessians, value ) assert split_info.is_categorical assert split_info.gain > 0 _assert_categories_equals_bitset( expected_categories_left, split_info.left_cat_bitset ) if has_missing_values: assert split_info.missing_go_to_left == expected_missing_go_to_left # If there is no missing value during training, the flag missing_go_to_left # is set later in the grower. # make sure samples are split correctly samples_left, samples_right, _ = splitter.split_indices( split_info, splitter.partition ) left_mask = np.isin(X_binned.ravel(), expected_categories_left) assert_array_equal(sample_indices[left_mask], samples_left) assert_array_equal(sample_indices[~left_mask], samples_right) def test_split_interaction_constraints(): """Check that allowed_features are respected.""" n_features = 4 # features 1 and 2 are not allowed to be split on allowed_features = np.array([0, 3], dtype=np.uint32) n_bins = 5 n_samples = 10 l2_regularization = 0.0 min_hessian_to_split = 1e-3 min_samples_leaf = 1 min_gain_to_split = 0.0 sample_indices = np.arange(n_samples, dtype=np.uint32) all_hessians = np.ones(1, dtype=G_H_DTYPE) sum_hessians = n_samples hessians_are_constant = True split_features = [] # The loop is to ensure that we split at least once on each allowed feature (0, 3). # This is tracked by split_features and checked at the end. for i in range(10): rng = np.random.RandomState(919 + i) X_binned = np.asfortranarray( rng.randint(0, n_bins - 1, size=(n_samples, n_features)), dtype=X_BINNED_DTYPE, ) X_binned = np.asfortranarray(X_binned, dtype=X_BINNED_DTYPE) # Make feature 1 very important all_gradients = (10 * X_binned[:, 1] + rng.randn(n_samples)).astype(G_H_DTYPE) sum_gradients = all_gradients.sum() builder = HistogramBuilder( X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant, n_threads, ) n_bins_non_missing = np.array([n_bins] * X_binned.shape[1], dtype=np.uint32) has_missing_values = np.array([False] * X_binned.shape[1], dtype=np.uint8) monotonic_cst = np.array( [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8 ) is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8) missing_values_bin_idx = n_bins - 1 splitter = Splitter( X_binned, n_bins_non_missing, missing_values_bin_idx, has_missing_values, is_categorical, monotonic_cst, l2_regularization, min_hessian_to_split, min_samples_leaf, min_gain_to_split, hessians_are_constant, ) assert np.all(sample_indices == splitter.partition) histograms = builder.compute_histograms_brute(sample_indices) value = compute_node_value( sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization ) # with all features allowed, feature 1 should be split on as it is the most # important one by construction of the gradients si_root = splitter.find_node_split( n_samples, histograms, sum_gradients, sum_hessians, value, allowed_features=None, ) assert si_root.feature_idx == 1 # only features 0 and 3 are allowed to be split on si_root = splitter.find_node_split( n_samples, histograms, sum_gradients, sum_hessians, value, allowed_features=allowed_features, ) split_features.append(si_root.feature_idx) assert si_root.feature_idx in allowed_features # make sure feature 0 and feature 3 are split on in the constraint setting assert set(allowed_features) == set(split_features) @pytest.mark.parametrize("forbidden_features", [set(), {1, 3}]) def test_split_feature_fraction_per_split(forbidden_features): """Check that feature_fraction_per_split is respected. Because we set `n_features = 4` and `feature_fraction_per_split = 0.25`, it means that calling `splitter.find_node_split` will be allowed to select a split for a single completely random feature at each call. So if we iterate enough, we should cover all the allowed features, irrespective of the values of the gradients and Hessians of the objective. """ n_features = 4 allowed_features = np.array( list(set(range(n_features)) - forbidden_features), dtype=np.uint32 ) n_bins = 5 n_samples = 40 l2_regularization = 0.0 min_hessian_to_split = 1e-3 min_samples_leaf = 1 min_gain_to_split = 0.0 rng = np.random.default_rng(42) sample_indices = np.arange(n_samples, dtype=np.uint32) all_gradients = rng.uniform(low=0.5, high=1, size=n_samples).astype(G_H_DTYPE) sum_gradients = all_gradients.sum() all_hessians = np.ones(1, dtype=G_H_DTYPE) sum_hessians = n_samples hessians_are_constant = True X_binned = np.asfortranarray( rng.integers(low=0, high=n_bins - 1, size=(n_samples, n_features)), dtype=X_BINNED_DTYPE, ) X_binned = np.asfortranarray(X_binned, dtype=X_BINNED_DTYPE) builder = HistogramBuilder( X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant, n_threads, ) histograms = builder.compute_histograms_brute(sample_indices) value = compute_node_value( sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization ) n_bins_non_missing = np.array([n_bins] * X_binned.shape[1], dtype=np.uint32) has_missing_values = np.array([False] * X_binned.shape[1], dtype=np.uint8) monotonic_cst = np.array( [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8 ) is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8) missing_values_bin_idx = n_bins - 1 params = dict( X_binned=X_binned, n_bins_non_missing=n_bins_non_missing, missing_values_bin_idx=missing_values_bin_idx, has_missing_values=has_missing_values, is_categorical=is_categorical, monotonic_cst=monotonic_cst, l2_regularization=l2_regularization, min_hessian_to_split=min_hessian_to_split, min_samples_leaf=min_samples_leaf, min_gain_to_split=min_gain_to_split, hessians_are_constant=hessians_are_constant, rng=rng, ) splitter_subsample = Splitter( feature_fraction_per_split=0.25, # THIS is the important setting here. **params, ) splitter_all_features = Splitter(feature_fraction_per_split=1.0, **params) assert np.all(sample_indices == splitter_subsample.partition) split_features_subsample = [] split_features_all = [] # The loop is to ensure that we split at least once on each feature. # This is tracked by split_features and checked at the end. for i in range(20): si_root = splitter_subsample.find_node_split( n_samples, histograms, sum_gradients, sum_hessians, value, allowed_features=allowed_features, ) split_features_subsample.append(si_root.feature_idx) # This second splitter is our "counterfactual". si_root = splitter_all_features.find_node_split( n_samples, histograms, sum_gradients, sum_hessians, value, allowed_features=allowed_features, ) split_features_all.append(si_root.feature_idx) # Make sure all features are split on. assert set(split_features_subsample) == set(allowed_features) # Make sure, our counterfactual always splits on same feature. assert len(set(split_features_all)) == 1