"""Weight Boosting. This module contains weight boosting estimators for both classification and regression. The module structure is the following: - The `BaseWeightBoosting` base class implements a common ``fit`` method for all the estimators in the module. Regression and classification only differ from each other in the loss function that is optimized. - :class:`~sklearn.ensemble.AdaBoostClassifier` implements adaptive boosting (AdaBoost-SAMME) for classification problems. - :class:`~sklearn.ensemble.AdaBoostRegressor` implements adaptive boosting (AdaBoost.R2) for regression problems. """ # Authors: Noel Dawe # Gilles Louppe # Hamzeh Alsalhi # Arnaud Joly # # License: BSD 3 clause import warnings from abc import ABCMeta, abstractmethod from numbers import Integral, Real import numpy as np from scipy.special import xlogy from ..base import ( ClassifierMixin, RegressorMixin, _fit_context, is_classifier, is_regressor, ) from ..metrics import accuracy_score, r2_score from ..tree import DecisionTreeClassifier, DecisionTreeRegressor from ..utils import _safe_indexing, check_random_state from ..utils._param_validation import HasMethods, Interval, StrOptions from ..utils.extmath import softmax, stable_cumsum from ..utils.metadata_routing import ( _raise_for_unsupported_routing, _RoutingNotSupportedMixin, ) from ..utils.validation import ( _check_sample_weight, _num_samples, check_is_fitted, has_fit_parameter, ) from ._base import BaseEnsemble __all__ = [ "AdaBoostClassifier", "AdaBoostRegressor", ] class BaseWeightBoosting(BaseEnsemble, metaclass=ABCMeta): """Base class for AdaBoost estimators. Warning: This class should not be used directly. Use derived classes instead. """ _parameter_constraints: dict = { "estimator": [HasMethods(["fit", "predict"]), None], "n_estimators": [Interval(Integral, 1, None, closed="left")], "learning_rate": [Interval(Real, 0, None, closed="neither")], "random_state": ["random_state"], } @abstractmethod def __init__( self, estimator=None, *, n_estimators=50, estimator_params=tuple(), learning_rate=1.0, random_state=None, ): super().__init__( estimator=estimator, n_estimators=n_estimators, estimator_params=estimator_params, ) self.learning_rate = learning_rate self.random_state = random_state def _check_X(self, X): # Only called to validate X in non-fit methods, therefore reset=False return self._validate_data( X, accept_sparse=["csr", "csc"], ensure_2d=True, allow_nd=True, dtype=None, reset=False, ) @_fit_context( # AdaBoost*.estimator is not validated yet prefer_skip_nested_validation=False ) def fit(self, X, y, sample_weight=None): """Build a boosted classifier/regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. y : array-like of shape (n_samples,) The target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, the sample weights are initialized to 1 / n_samples. Returns ------- self : object Fitted estimator. """ _raise_for_unsupported_routing(self, "fit", sample_weight=sample_weight) X, y = self._validate_data( X, y, accept_sparse=["csr", "csc"], ensure_2d=True, allow_nd=True, dtype=None, y_numeric=is_regressor(self), ) sample_weight = _check_sample_weight( sample_weight, X, np.float64, copy=True, only_non_negative=True ) sample_weight /= sample_weight.sum() # Check parameters self._validate_estimator() # Clear any previous fit results self.estimators_ = [] self.estimator_weights_ = np.zeros(self.n_estimators, dtype=np.float64) self.estimator_errors_ = np.ones(self.n_estimators, dtype=np.float64) # Initialization of the random number instance that will be used to # generate a seed at each iteration random_state = check_random_state(self.random_state) epsilon = np.finfo(sample_weight.dtype).eps zero_weight_mask = sample_weight == 0.0 for iboost in range(self.n_estimators): # avoid extremely small sample weight, for details see issue #20320 sample_weight = np.clip(sample_weight, a_min=epsilon, a_max=None) # do not clip sample weights that were exactly zero originally sample_weight[zero_weight_mask] = 0.0 # Boosting step sample_weight, estimator_weight, estimator_error = self._boost( iboost, X, y, sample_weight, random_state ) # Early termination if sample_weight is None: break self.estimator_weights_[iboost] = estimator_weight self.estimator_errors_[iboost] = estimator_error # Stop if error is zero if estimator_error == 0: break sample_weight_sum = np.sum(sample_weight) if not np.isfinite(sample_weight_sum): warnings.warn( ( "Sample weights have reached infinite values," f" at iteration {iboost}, causing overflow. " "Iterations stopped. Try lowering the learning rate." ), stacklevel=2, ) break # Stop if the sum of sample weights has become non-positive if sample_weight_sum <= 0: break if iboost < self.n_estimators - 1: # Normalize sample_weight /= sample_weight_sum return self @abstractmethod def _boost(self, iboost, X, y, sample_weight, random_state): """Implement a single boost. Warning: This method needs to be overridden by subclasses. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. y : array-like of shape (n_samples,) The target values (class labels). sample_weight : array-like of shape (n_samples,) The current sample weights. random_state : RandomState The current random number generator Returns ------- sample_weight : array-like of shape (n_samples,) or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. error : float The classification error for the current boost. If None then boosting has terminated early. """ pass def staged_score(self, X, y, sample_weight=None): """Return staged scores for X, y. This generator method yields the ensemble score after each iteration of boosting and therefore allows monitoring, such as to determine the score on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. y : array-like of shape (n_samples,) Labels for X. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Yields ------ z : float """ X = self._check_X(X) for y_pred in self.staged_predict(X): if is_classifier(self): yield accuracy_score(y, y_pred, sample_weight=sample_weight) else: yield r2_score(y, y_pred, sample_weight=sample_weight) @property def feature_importances_(self): """The impurity-based feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance. Warning: impurity-based feature importances can be misleading for high cardinality features (many unique values). See :func:`sklearn.inspection.permutation_importance` as an alternative. Returns ------- feature_importances_ : ndarray of shape (n_features,) The feature importances. """ if self.estimators_ is None or len(self.estimators_) == 0: raise ValueError( "Estimator not fitted, call `fit` before `feature_importances_`." ) try: norm = self.estimator_weights_.sum() return ( sum( weight * clf.feature_importances_ for weight, clf in zip(self.estimator_weights_, self.estimators_) ) / norm ) except AttributeError as e: raise AttributeError( "Unable to compute feature importances " "since estimator does not have a " "feature_importances_ attribute" ) from e def _samme_proba(estimator, n_classes, X): """Calculate algorithm 4, step 2, equation c) of Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ proba = estimator.predict_proba(X) # Displace zero probabilities so the log is defined. # Also fix negative elements which may occur with # negative sample weights. np.clip(proba, np.finfo(proba.dtype).eps, None, out=proba) log_proba = np.log(proba) return (n_classes - 1) * ( log_proba - (1.0 / n_classes) * log_proba.sum(axis=1)[:, np.newaxis] ) class AdaBoostClassifier( _RoutingNotSupportedMixin, ClassifierMixin, BaseWeightBoosting ): """An AdaBoost classifier. An AdaBoost [1]_ classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances are adjusted such that subsequent classifiers focus more on difficult cases. This class implements the algorithm based on [2]_. Read more in the :ref:`User Guide `. .. versionadded:: 0.14 Parameters ---------- estimator : object, default=None The base estimator from which the boosted ensemble is built. Support for sample weighting is required, as well as proper ``classes_`` and ``n_classes_`` attributes. If ``None``, then the base estimator is :class:`~sklearn.tree.DecisionTreeClassifier` initialized with `max_depth=1`. .. versionadded:: 1.2 `base_estimator` was renamed to `estimator`. n_estimators : int, default=50 The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. Values must be in the range `[1, inf)`. learning_rate : float, default=1.0 Weight applied to each classifier at each boosting iteration. A higher learning rate increases the contribution of each classifier. There is a trade-off between the `learning_rate` and `n_estimators` parameters. Values must be in the range `(0.0, inf)`. algorithm : {'SAMME', 'SAMME.R'}, default='SAMME.R' If 'SAMME.R' then use the SAMME.R real boosting algorithm. ``estimator`` must support calculation of class probabilities. If 'SAMME' then use the SAMME discrete boosting algorithm. The SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. .. deprecated:: 1.4 `"SAMME.R"` is deprecated and will be removed in version 1.6. '"SAMME"' will become the default. random_state : int, RandomState instance or None, default=None Controls the random seed given at each `estimator` at each boosting iteration. Thus, it is only used when `estimator` exposes a `random_state`. Pass an int for reproducible output across multiple function calls. See :term:`Glossary `. Attributes ---------- estimator_ : estimator The base estimator from which the ensemble is grown. .. versionadded:: 1.2 `base_estimator_` was renamed to `estimator_`. estimators_ : list of classifiers The collection of fitted sub-estimators. classes_ : ndarray of shape (n_classes,) The classes labels. n_classes_ : int The number of classes. estimator_weights_ : ndarray of floats Weights for each estimator in the boosted ensemble. estimator_errors_ : ndarray of floats Classification error for each estimator in the boosted ensemble. feature_importances_ : ndarray of shape (n_features,) The impurity-based feature importances if supported by the ``estimator`` (when based on decision trees). Warning: impurity-based feature importances can be misleading for high cardinality features (many unique values). See :func:`sklearn.inspection.permutation_importance` as an alternative. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- AdaBoostRegressor : An AdaBoost regressor that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted according to the error of the current prediction. GradientBoostingClassifier : GB builds an additive model in a forward stage-wise fashion. Regression trees are fit on the negative gradient of the binomial or multinomial deviance loss function. Binary classification is a special case where only a single regression tree is induced. sklearn.tree.DecisionTreeClassifier : A non-parametric supervised learning method used for classification. Creates a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. References ---------- .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995. .. [2] :doi:`J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class adaboost." Statistics and its Interface 2.3 (2009): 349-360. <10.4310/SII.2009.v2.n3.a8>` Examples -------- >>> from sklearn.ensemble import AdaBoostClassifier >>> from sklearn.datasets import make_classification >>> X, y = make_classification(n_samples=1000, n_features=4, ... n_informative=2, n_redundant=0, ... random_state=0, shuffle=False) >>> clf = AdaBoostClassifier(n_estimators=100, algorithm="SAMME", random_state=0) >>> clf.fit(X, y) AdaBoostClassifier(algorithm='SAMME', n_estimators=100, random_state=0) >>> clf.predict([[0, 0, 0, 0]]) array([1]) >>> clf.score(X, y) 0.96... """ # TODO(1.6): Modify _parameter_constraints for "algorithm" to only check # for "SAMME" _parameter_constraints: dict = { **BaseWeightBoosting._parameter_constraints, "algorithm": [ StrOptions({"SAMME", "SAMME.R"}), ], } # TODO(1.6): Change default "algorithm" value to "SAMME" def __init__( self, estimator=None, *, n_estimators=50, learning_rate=1.0, algorithm="SAMME.R", random_state=None, ): super().__init__( estimator=estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state, ) self.algorithm = algorithm def _validate_estimator(self): """Check the estimator and set the estimator_ attribute.""" super()._validate_estimator(default=DecisionTreeClassifier(max_depth=1)) # TODO(1.6): Remove, as "SAMME.R" value for "algorithm" param will be # removed in 1.6 # SAMME-R requires predict_proba-enabled base estimators if self.algorithm != "SAMME": warnings.warn( ( "The SAMME.R algorithm (the default) is deprecated and will be" " removed in 1.6. Use the SAMME algorithm to circumvent this" " warning." ), FutureWarning, ) if not hasattr(self.estimator_, "predict_proba"): raise TypeError( "AdaBoostClassifier with algorithm='SAMME.R' requires " "that the weak learner supports the calculation of class " "probabilities with a predict_proba method.\n" "Please change the base estimator or set " "algorithm='SAMME' instead." ) if not has_fit_parameter(self.estimator_, "sample_weight"): raise ValueError( f"{self.estimator.__class__.__name__} doesn't support sample_weight." ) # TODO(1.6): Redefine the scope of the `_boost` and `_boost_discrete` # functions to be the same since SAMME will be the default value for the # "algorithm" parameter in version 1.6. Thus, a distinguishing function is # no longer needed. (Or adjust code here, if another algorithm, shall be # used instead of SAMME.R.) def _boost(self, iboost, X, y, sample_weight, random_state): """Implement a single boost. Perform a single boost according to the real multi-class SAMME.R algorithm or to the discrete SAMME algorithm and return the updated sample weights. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. y : array-like of shape (n_samples,) The target values (class labels). sample_weight : array-like of shape (n_samples,) The current sample weights. random_state : RandomState instance The RandomState instance used if the base estimator accepts a `random_state` attribute. Returns ------- sample_weight : array-like of shape (n_samples,) or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. estimator_error : float The classification error for the current boost. If None then boosting has terminated early. """ if self.algorithm == "SAMME.R": return self._boost_real(iboost, X, y, sample_weight, random_state) else: # elif self.algorithm == "SAMME": return self._boost_discrete(iboost, X, y, sample_weight, random_state) # TODO(1.6): Remove function. The `_boost_real` function won't be used any # longer, because the SAMME.R algorithm will be deprecated in 1.6. def _boost_real(self, iboost, X, y, sample_weight, random_state): """Implement a single boost using the SAMME.R real algorithm.""" estimator = self._make_estimator(random_state=random_state) estimator.fit(X, y, sample_weight=sample_weight) y_predict_proba = estimator.predict_proba(X) if iboost == 0: self.classes_ = getattr(estimator, "classes_", None) self.n_classes_ = len(self.classes_) y_predict = self.classes_.take(np.argmax(y_predict_proba, axis=1), axis=0) # Instances incorrectly classified incorrect = y_predict != y # Error fraction estimator_error = np.mean(np.average(incorrect, weights=sample_weight, axis=0)) # Stop if classification is perfect if estimator_error <= 0: return sample_weight, 1.0, 0.0 # Construct y coding as described in Zhu et al [2]: # # y_k = 1 if c == k else -1 / (K - 1) # # where K == n_classes_ and c, k in [0, K) are indices along the second # axis of the y coding with c being the index corresponding to the true # class label. n_classes = self.n_classes_ classes = self.classes_ y_codes = np.array([-1.0 / (n_classes - 1), 1.0]) y_coding = y_codes.take(classes == y[:, np.newaxis]) # Displace zero probabilities so the log is defined. # Also fix negative elements which may occur with # negative sample weights. proba = y_predict_proba # alias for readability np.clip(proba, np.finfo(proba.dtype).eps, None, out=proba) # Boost weight using multi-class AdaBoost SAMME.R alg estimator_weight = ( -1.0 * self.learning_rate * ((n_classes - 1.0) / n_classes) * xlogy(y_coding, y_predict_proba).sum(axis=1) ) # Only boost the weights if it will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights sample_weight *= np.exp( estimator_weight * ((sample_weight > 0) | (estimator_weight < 0)) ) return sample_weight, 1.0, estimator_error def _boost_discrete(self, iboost, X, y, sample_weight, random_state): """Implement a single boost using the SAMME discrete algorithm.""" estimator = self._make_estimator(random_state=random_state) estimator.fit(X, y, sample_weight=sample_weight) y_predict = estimator.predict(X) if iboost == 0: self.classes_ = getattr(estimator, "classes_", None) self.n_classes_ = len(self.classes_) # Instances incorrectly classified incorrect = y_predict != y # Error fraction estimator_error = np.mean(np.average(incorrect, weights=sample_weight, axis=0)) # Stop if classification is perfect if estimator_error <= 0: return sample_weight, 1.0, 0.0 n_classes = self.n_classes_ # Stop if the error is at least as bad as random guessing if estimator_error >= 1.0 - (1.0 / n_classes): self.estimators_.pop(-1) if len(self.estimators_) == 0: raise ValueError( "BaseClassifier in AdaBoostClassifier " "ensemble is worse than random, ensemble " "can not be fit." ) return None, None, None # Boost weight using multi-class AdaBoost SAMME alg estimator_weight = self.learning_rate * ( np.log((1.0 - estimator_error) / estimator_error) + np.log(n_classes - 1.0) ) # Only boost the weights if it will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights sample_weight = np.exp( np.log(sample_weight) + estimator_weight * incorrect * (sample_weight > 0) ) return sample_weight, estimator_weight, estimator_error def predict(self, X): """Predict classes for X. The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. Returns ------- y : ndarray of shape (n_samples,) The predicted classes. """ pred = self.decision_function(X) if self.n_classes_ == 2: return self.classes_.take(pred > 0, axis=0) return self.classes_.take(np.argmax(pred, axis=1), axis=0) def staged_predict(self, X): """Return staged predictions for X. The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble. This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost. Parameters ---------- X : array-like of shape (n_samples, n_features) The input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. Yields ------ y : generator of ndarray of shape (n_samples,) The predicted classes. """ X = self._check_X(X) n_classes = self.n_classes_ classes = self.classes_ if n_classes == 2: for pred in self.staged_decision_function(X): yield np.array(classes.take(pred > 0, axis=0)) else: for pred in self.staged_decision_function(X): yield np.array(classes.take(np.argmax(pred, axis=1), axis=0)) def decision_function(self, X): """Compute the decision function of ``X``. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. Returns ------- score : ndarray of shape of (n_samples, k) The decision function of the input samples. The order of outputs is the same as that of the :term:`classes_` attribute. Binary classification is a special cases with ``k == 1``, otherwise ``k==n_classes``. For binary classification, values closer to -1 or 1 mean more like the first or second class in ``classes_``, respectively. """ check_is_fitted(self) X = self._check_X(X) n_classes = self.n_classes_ classes = self.classes_[:, np.newaxis] # TODO(1.6): Remove, because "algorithm" param will be deprecated in 1.6 if self.algorithm == "SAMME.R": # The weights are all 1. for SAMME.R pred = sum( _samme_proba(estimator, n_classes, X) for estimator in self.estimators_ ) else: # self.algorithm == "SAMME" pred = sum( np.where( (estimator.predict(X) == classes).T, w, -1 / (n_classes - 1) * w, ) for estimator, w in zip(self.estimators_, self.estimator_weights_) ) pred /= self.estimator_weights_.sum() if n_classes == 2: pred[:, 0] *= -1 return pred.sum(axis=1) return pred def staged_decision_function(self, X): """Compute decision function of ``X`` for each boosting iteration. This method allows monitoring (i.e. determine error on testing set) after each boosting iteration. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. Yields ------ score : generator of ndarray of shape (n_samples, k) The decision function of the input samples. The order of outputs is the same of that of the :term:`classes_` attribute. Binary classification is a special cases with ``k == 1``, otherwise ``k==n_classes``. For binary classification, values closer to -1 or 1 mean more like the first or second class in ``classes_``, respectively. """ check_is_fitted(self) X = self._check_X(X) n_classes = self.n_classes_ classes = self.classes_[:, np.newaxis] pred = None norm = 0.0 for weight, estimator in zip(self.estimator_weights_, self.estimators_): norm += weight # TODO(1.6): Remove, because "algorithm" param will be deprecated in # 1.6 if self.algorithm == "SAMME.R": # The weights are all 1. for SAMME.R current_pred = _samme_proba(estimator, n_classes, X) else: # elif self.algorithm == "SAMME": current_pred = np.where( (estimator.predict(X) == classes).T, weight, -1 / (n_classes - 1) * weight, ) if pred is None: pred = current_pred else: pred += current_pred if n_classes == 2: tmp_pred = np.copy(pred) tmp_pred[:, 0] *= -1 yield (tmp_pred / norm).sum(axis=1) else: yield pred / norm @staticmethod def _compute_proba_from_decision(decision, n_classes): """Compute probabilities from the decision function. This is based eq. (15) of [1] where: p(y=c|X) = exp((1 / K-1) f_c(X)) / sum_k(exp((1 / K-1) f_k(X))) = softmax((1 / K-1) * f(X)) References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ if n_classes == 2: decision = np.vstack([-decision, decision]).T / 2 else: decision /= n_classes - 1 return softmax(decision, copy=False) def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the weighted mean predicted class probabilities of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. Returns ------- p : ndarray of shape (n_samples, n_classes) The class probabilities of the input samples. The order of outputs is the same of that of the :term:`classes_` attribute. """ check_is_fitted(self) n_classes = self.n_classes_ if n_classes == 1: return np.ones((_num_samples(X), 1)) decision = self.decision_function(X) return self._compute_proba_from_decision(decision, n_classes) def staged_predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the weighted mean predicted class probabilities of the classifiers in the ensemble. This generator method yields the ensemble predicted class probabilities after each iteration of boosting and therefore allows monitoring, such as to determine the predicted class probabilities on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. Yields ------ p : generator of ndarray of shape (n_samples,) The class probabilities of the input samples. The order of outputs is the same of that of the :term:`classes_` attribute. """ n_classes = self.n_classes_ for decision in self.staged_decision_function(X): yield self._compute_proba_from_decision(decision, n_classes) def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the weighted mean predicted class log-probabilities of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. Returns ------- p : ndarray of shape (n_samples, n_classes) The class probabilities of the input samples. The order of outputs is the same of that of the :term:`classes_` attribute. """ return np.log(self.predict_proba(X)) class AdaBoostRegressor(_RoutingNotSupportedMixin, RegressorMixin, BaseWeightBoosting): """An AdaBoost regressor. An AdaBoost [1] regressor is a meta-estimator that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases. This class implements the algorithm known as AdaBoost.R2 [2]. Read more in the :ref:`User Guide `. .. versionadded:: 0.14 Parameters ---------- estimator : object, default=None The base estimator from which the boosted ensemble is built. If ``None``, then the base estimator is :class:`~sklearn.tree.DecisionTreeRegressor` initialized with `max_depth=3`. .. versionadded:: 1.2 `base_estimator` was renamed to `estimator`. n_estimators : int, default=50 The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. Values must be in the range `[1, inf)`. learning_rate : float, default=1.0 Weight applied to each regressor at each boosting iteration. A higher learning rate increases the contribution of each regressor. There is a trade-off between the `learning_rate` and `n_estimators` parameters. Values must be in the range `(0.0, inf)`. loss : {'linear', 'square', 'exponential'}, default='linear' The loss function to use when updating the weights after each boosting iteration. random_state : int, RandomState instance or None, default=None Controls the random seed given at each `estimator` at each boosting iteration. Thus, it is only used when `estimator` exposes a `random_state`. In addition, it controls the bootstrap of the weights used to train the `estimator` at each boosting iteration. Pass an int for reproducible output across multiple function calls. See :term:`Glossary `. Attributes ---------- estimator_ : estimator The base estimator from which the ensemble is grown. .. versionadded:: 1.2 `base_estimator_` was renamed to `estimator_`. estimators_ : list of regressors The collection of fitted sub-estimators. estimator_weights_ : ndarray of floats Weights for each estimator in the boosted ensemble. estimator_errors_ : ndarray of floats Regression error for each estimator in the boosted ensemble. feature_importances_ : ndarray of shape (n_features,) The impurity-based feature importances if supported by the ``estimator`` (when based on decision trees). Warning: impurity-based feature importances can be misleading for high cardinality features (many unique values). See :func:`sklearn.inspection.permutation_importance` as an alternative. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- AdaBoostClassifier : An AdaBoost classifier. GradientBoostingRegressor : Gradient Boosting Classification Tree. sklearn.tree.DecisionTreeRegressor : A decision tree regressor. References ---------- .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995. .. [2] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. Examples -------- >>> from sklearn.ensemble import AdaBoostRegressor >>> from sklearn.datasets import make_regression >>> X, y = make_regression(n_features=4, n_informative=2, ... random_state=0, shuffle=False) >>> regr = AdaBoostRegressor(random_state=0, n_estimators=100) >>> regr.fit(X, y) AdaBoostRegressor(n_estimators=100, random_state=0) >>> regr.predict([[0, 0, 0, 0]]) array([4.7972...]) >>> regr.score(X, y) 0.9771... """ _parameter_constraints: dict = { **BaseWeightBoosting._parameter_constraints, "loss": [StrOptions({"linear", "square", "exponential"})], } def __init__( self, estimator=None, *, n_estimators=50, learning_rate=1.0, loss="linear", random_state=None, ): super().__init__( estimator=estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state, ) self.loss = loss self.random_state = random_state def _validate_estimator(self): """Check the estimator and set the estimator_ attribute.""" super()._validate_estimator(default=DecisionTreeRegressor(max_depth=3)) def _boost(self, iboost, X, y, sample_weight, random_state): """Implement a single boost for regression Perform a single boost according to the AdaBoost.R2 algorithm and return the updated sample weights. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. y : array-like of shape (n_samples,) The target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape (n_samples,) The current sample weights. random_state : RandomState The RandomState instance used if the base estimator accepts a `random_state` attribute. Controls also the bootstrap of the weights used to train the weak learner. replacement. Returns ------- sample_weight : array-like of shape (n_samples,) or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. estimator_error : float The regression error for the current boost. If None then boosting has terminated early. """ estimator = self._make_estimator(random_state=random_state) # Weighted sampling of the training set with replacement bootstrap_idx = random_state.choice( np.arange(_num_samples(X)), size=_num_samples(X), replace=True, p=sample_weight, ) # Fit on the bootstrapped sample and obtain a prediction # for all samples in the training set X_ = _safe_indexing(X, bootstrap_idx) y_ = _safe_indexing(y, bootstrap_idx) estimator.fit(X_, y_) y_predict = estimator.predict(X) error_vect = np.abs(y_predict - y) sample_mask = sample_weight > 0 masked_sample_weight = sample_weight[sample_mask] masked_error_vector = error_vect[sample_mask] error_max = masked_error_vector.max() if error_max != 0: masked_error_vector /= error_max if self.loss == "square": masked_error_vector **= 2 elif self.loss == "exponential": masked_error_vector = 1.0 - np.exp(-masked_error_vector) # Calculate the average loss estimator_error = (masked_sample_weight * masked_error_vector).sum() if estimator_error <= 0: # Stop if fit is perfect return sample_weight, 1.0, 0.0 elif estimator_error >= 0.5: # Discard current estimator only if it isn't the only one if len(self.estimators_) > 1: self.estimators_.pop(-1) return None, None, None beta = estimator_error / (1.0 - estimator_error) # Boost weight using AdaBoost.R2 alg estimator_weight = self.learning_rate * np.log(1.0 / beta) if not iboost == self.n_estimators - 1: sample_weight[sample_mask] *= np.power( beta, (1.0 - masked_error_vector) * self.learning_rate ) return sample_weight, estimator_weight, estimator_error def _get_median_predict(self, X, limit): # Evaluate predictions of all estimators predictions = np.array([est.predict(X) for est in self.estimators_[:limit]]).T # Sort the predictions sorted_idx = np.argsort(predictions, axis=1) # Find index of median prediction for each sample weight_cdf = stable_cumsum(self.estimator_weights_[sorted_idx], axis=1) median_or_above = weight_cdf >= 0.5 * weight_cdf[:, -1][:, np.newaxis] median_idx = median_or_above.argmax(axis=1) median_estimators = sorted_idx[np.arange(_num_samples(X)), median_idx] # Return median predictions return predictions[np.arange(_num_samples(X)), median_estimators] def predict(self, X): """Predict regression value for X. The predicted regression value of an input sample is computed as the weighted median prediction of the regressors in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. Returns ------- y : ndarray of shape (n_samples,) The predicted regression values. """ check_is_fitted(self) X = self._check_X(X) return self._get_median_predict(X, len(self.estimators_)) def staged_predict(self, X): """Return staged predictions for X. The predicted regression value of an input sample is computed as the weighted median prediction of the regressors in the ensemble. This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Yields ------ y : generator of ndarray of shape (n_samples,) The predicted regression values. """ check_is_fitted(self) X = self._check_X(X) for i, _ in enumerate(self.estimators_, 1): yield self._get_median_predict(X, limit=i)