import numpy as np from ...base import is_regressor from ...preprocessing import LabelEncoder from ...utils import _safe_indexing, check_matplotlib_support from ...utils._response import _get_response_values from ...utils.validation import ( _is_arraylike_not_scalar, _num_features, check_is_fitted, ) def _check_boundary_response_method(estimator, response_method, class_of_interest): """Validate the response methods to be used with the fitted estimator. Parameters ---------- estimator : object Fitted estimator to check. response_method : {'auto', 'predict_proba', 'decision_function', 'predict'} Specifies whether to use :term:`predict_proba`, :term:`decision_function`, :term:`predict` as the target response. If set to 'auto', the response method is tried in the following order: :term:`decision_function`, :term:`predict_proba`, :term:`predict`. class_of_interest : int, float, bool, str or None The class considered when plotting the decision. If the label is specified, it is then possible to plot the decision boundary in multiclass settings. .. versionadded:: 1.4 Returns ------- prediction_method : list of str or str The name or list of names of the response methods to use. """ has_classes = hasattr(estimator, "classes_") if has_classes and _is_arraylike_not_scalar(estimator.classes_[0]): msg = "Multi-label and multi-output multi-class classifiers are not supported" raise ValueError(msg) if has_classes and len(estimator.classes_) > 2: if response_method not in {"auto", "predict"} and class_of_interest is None: msg = ( "Multiclass classifiers are only supported when `response_method` is " "'predict' or 'auto'. Else you must provide `class_of_interest` to " "plot the decision boundary of a specific class." ) raise ValueError(msg) prediction_method = "predict" if response_method == "auto" else response_method elif response_method == "auto": if is_regressor(estimator): prediction_method = "predict" else: prediction_method = ["decision_function", "predict_proba", "predict"] else: prediction_method = response_method return prediction_method class DecisionBoundaryDisplay: """Decisions boundary visualization. It is recommended to use :func:`~sklearn.inspection.DecisionBoundaryDisplay.from_estimator` to create a :class:`DecisionBoundaryDisplay`. All parameters are stored as attributes. Read more in the :ref:`User Guide `. .. versionadded:: 1.1 Parameters ---------- xx0 : ndarray of shape (grid_resolution, grid_resolution) First output of :func:`meshgrid `. xx1 : ndarray of shape (grid_resolution, grid_resolution) Second output of :func:`meshgrid `. response : ndarray of shape (grid_resolution, grid_resolution) Values of the response function. xlabel : str, default=None Default label to place on x axis. ylabel : str, default=None Default label to place on y axis. Attributes ---------- surface_ : matplotlib `QuadContourSet` or `QuadMesh` If `plot_method` is 'contour' or 'contourf', `surface_` is a :class:`QuadContourSet `. If `plot_method` is 'pcolormesh', `surface_` is a :class:`QuadMesh `. ax_ : matplotlib Axes Axes with decision boundary. figure_ : matplotlib Figure Figure containing the decision boundary. See Also -------- DecisionBoundaryDisplay.from_estimator : Plot decision boundary given an estimator. Examples -------- >>> import matplotlib.pyplot as plt >>> import numpy as np >>> from sklearn.datasets import load_iris >>> from sklearn.inspection import DecisionBoundaryDisplay >>> from sklearn.tree import DecisionTreeClassifier >>> iris = load_iris() >>> feature_1, feature_2 = np.meshgrid( ... np.linspace(iris.data[:, 0].min(), iris.data[:, 0].max()), ... np.linspace(iris.data[:, 1].min(), iris.data[:, 1].max()) ... ) >>> grid = np.vstack([feature_1.ravel(), feature_2.ravel()]).T >>> tree = DecisionTreeClassifier().fit(iris.data[:, :2], iris.target) >>> y_pred = np.reshape(tree.predict(grid), feature_1.shape) >>> display = DecisionBoundaryDisplay( ... xx0=feature_1, xx1=feature_2, response=y_pred ... ) >>> display.plot() <...> >>> display.ax_.scatter( ... iris.data[:, 0], iris.data[:, 1], c=iris.target, edgecolor="black" ... ) <...> >>> plt.show() """ def __init__(self, *, xx0, xx1, response, xlabel=None, ylabel=None): self.xx0 = xx0 self.xx1 = xx1 self.response = response self.xlabel = xlabel self.ylabel = ylabel def plot(self, plot_method="contourf", ax=None, xlabel=None, ylabel=None, **kwargs): """Plot visualization. Parameters ---------- plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf' Plotting method to call when plotting the response. Please refer to the following matplotlib documentation for details: :func:`contourf `, :func:`contour `, :func:`pcolormesh `. ax : Matplotlib axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. xlabel : str, default=None Overwrite the x-axis label. ylabel : str, default=None Overwrite the y-axis label. **kwargs : dict Additional keyword arguments to be passed to the `plot_method`. Returns ------- display: :class:`~sklearn.inspection.DecisionBoundaryDisplay` Object that stores computed values. """ check_matplotlib_support("DecisionBoundaryDisplay.plot") import matplotlib.pyplot as plt # noqa if plot_method not in ("contourf", "contour", "pcolormesh"): raise ValueError( "plot_method must be 'contourf', 'contour', or 'pcolormesh'" ) if ax is None: _, ax = plt.subplots() plot_func = getattr(ax, plot_method) self.surface_ = plot_func(self.xx0, self.xx1, self.response, **kwargs) if xlabel is not None or not ax.get_xlabel(): xlabel = self.xlabel if xlabel is None else xlabel ax.set_xlabel(xlabel) if ylabel is not None or not ax.get_ylabel(): ylabel = self.ylabel if ylabel is None else ylabel ax.set_ylabel(ylabel) self.ax_ = ax self.figure_ = ax.figure return self @classmethod def from_estimator( cls, estimator, X, *, grid_resolution=100, eps=1.0, plot_method="contourf", response_method="auto", class_of_interest=None, xlabel=None, ylabel=None, ax=None, **kwargs, ): """Plot decision boundary given an estimator. Read more in the :ref:`User Guide `. Parameters ---------- estimator : object Trained estimator used to plot the decision boundary. X : {array-like, sparse matrix, dataframe} of shape (n_samples, 2) Input data that should be only 2-dimensional. grid_resolution : int, default=100 Number of grid points to use for plotting decision boundary. Higher values will make the plot look nicer but be slower to render. eps : float, default=1.0 Extends the minimum and maximum values of X for evaluating the response function. plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf' Plotting method to call when plotting the response. Please refer to the following matplotlib documentation for details: :func:`contourf `, :func:`contour `, :func:`pcolormesh `. response_method : {'auto', 'predict_proba', 'decision_function', \ 'predict'}, default='auto' Specifies whether to use :term:`predict_proba`, :term:`decision_function`, :term:`predict` as the target response. If set to 'auto', the response method is tried in the following order: :term:`decision_function`, :term:`predict_proba`, :term:`predict`. For multiclass problems, :term:`predict` is selected when `response_method="auto"`. class_of_interest : int, float, bool or str, default=None The class considered when plotting the decision. If None, `estimator.classes_[1]` is considered as the positive class for binary classifiers. For multiclass classifiers, passing an explicit value for `class_of_interest` is mandatory. .. versionadded:: 1.4 xlabel : str, default=None The label used for the x-axis. If `None`, an attempt is made to extract a label from `X` if it is a dataframe, otherwise an empty string is used. ylabel : str, default=None The label used for the y-axis. If `None`, an attempt is made to extract a label from `X` if it is a dataframe, otherwise an empty string is used. ax : Matplotlib axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. **kwargs : dict Additional keyword arguments to be passed to the `plot_method`. Returns ------- display : :class:`~sklearn.inspection.DecisionBoundaryDisplay` Object that stores the result. See Also -------- DecisionBoundaryDisplay : Decision boundary visualization. sklearn.metrics.ConfusionMatrixDisplay.from_estimator : Plot the confusion matrix given an estimator, the data, and the label. sklearn.metrics.ConfusionMatrixDisplay.from_predictions : Plot the confusion matrix given the true and predicted labels. Examples -------- >>> import matplotlib.pyplot as plt >>> from sklearn.datasets import load_iris >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.inspection import DecisionBoundaryDisplay >>> iris = load_iris() >>> X = iris.data[:, :2] >>> classifier = LogisticRegression().fit(X, iris.target) >>> disp = DecisionBoundaryDisplay.from_estimator( ... classifier, X, response_method="predict", ... xlabel=iris.feature_names[0], ylabel=iris.feature_names[1], ... alpha=0.5, ... ) >>> disp.ax_.scatter(X[:, 0], X[:, 1], c=iris.target, edgecolor="k") <...> >>> plt.show() """ check_matplotlib_support(f"{cls.__name__}.from_estimator") check_is_fitted(estimator) if not grid_resolution > 1: raise ValueError( "grid_resolution must be greater than 1. Got" f" {grid_resolution} instead." ) if not eps >= 0: raise ValueError( f"eps must be greater than or equal to 0. Got {eps} instead." ) possible_plot_methods = ("contourf", "contour", "pcolormesh") if plot_method not in possible_plot_methods: available_methods = ", ".join(possible_plot_methods) raise ValueError( f"plot_method must be one of {available_methods}. " f"Got {plot_method} instead." ) num_features = _num_features(X) if num_features != 2: raise ValueError( f"n_features must be equal to 2. Got {num_features} instead." ) x0, x1 = _safe_indexing(X, 0, axis=1), _safe_indexing(X, 1, axis=1) x0_min, x0_max = x0.min() - eps, x0.max() + eps x1_min, x1_max = x1.min() - eps, x1.max() + eps xx0, xx1 = np.meshgrid( np.linspace(x0_min, x0_max, grid_resolution), np.linspace(x1_min, x1_max, grid_resolution), ) if hasattr(X, "iloc"): # we need to preserve the feature names and therefore get an empty dataframe X_grid = X.iloc[[], :].copy() X_grid.iloc[:, 0] = xx0.ravel() X_grid.iloc[:, 1] = xx1.ravel() else: X_grid = np.c_[xx0.ravel(), xx1.ravel()] prediction_method = _check_boundary_response_method( estimator, response_method, class_of_interest ) try: response, _, response_method_used = _get_response_values( estimator, X_grid, response_method=prediction_method, pos_label=class_of_interest, return_response_method_used=True, ) except ValueError as exc: if "is not a valid label" in str(exc): # re-raise a more informative error message since `pos_label` is unknown # to our user when interacting with # `DecisionBoundaryDisplay.from_estimator` raise ValueError( f"class_of_interest={class_of_interest} is not a valid label: It " f"should be one of {estimator.classes_}" ) from exc raise # convert classes predictions into integers if response_method_used == "predict" and hasattr(estimator, "classes_"): encoder = LabelEncoder() encoder.classes_ = estimator.classes_ response = encoder.transform(response) if response.ndim != 1: if is_regressor(estimator): raise ValueError("Multi-output regressors are not supported") # For the multiclass case, `_get_response_values` returns the response # as-is. Thus, we have a column per class and we need to select the column # corresponding to the positive class. col_idx = np.flatnonzero(estimator.classes_ == class_of_interest)[0] response = response[:, col_idx] if xlabel is None: xlabel = X.columns[0] if hasattr(X, "columns") else "" if ylabel is None: ylabel = X.columns[1] if hasattr(X, "columns") else "" display = cls( xx0=xx0, xx1=xx1, response=response.reshape(xx0.shape), xlabel=xlabel, ylabel=ylabel, ) return display.plot(ax=ax, plot_method=plot_method, **kwargs)