# License: BSD 3 clause import inspect import numpy as np import pytest from sklearn.base import is_classifier from sklearn.datasets import make_low_rank_matrix from sklearn.linear_model import ( ARDRegression, BayesianRidge, ElasticNet, ElasticNetCV, Lars, LarsCV, Lasso, LassoCV, LassoLarsCV, LassoLarsIC, LinearRegression, LogisticRegression, LogisticRegressionCV, MultiTaskElasticNet, MultiTaskElasticNetCV, MultiTaskLasso, MultiTaskLassoCV, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV, PoissonRegressor, Ridge, RidgeCV, SGDRegressor, TweedieRegressor, ) # Note: GammaRegressor() and TweedieRegressor(power != 1) have a non-canonical link. @pytest.mark.parametrize( "model", [ ARDRegression(), BayesianRidge(), ElasticNet(), ElasticNetCV(), Lars(), LarsCV(), Lasso(), LassoCV(), LassoLarsCV(), LassoLarsIC(), LinearRegression(), # TODO: FIx SAGA which fails badly with sample_weights. # This is a known limitation, see: # https://github.com/scikit-learn/scikit-learn/issues/21305 pytest.param( LogisticRegression( penalty="elasticnet", solver="saga", l1_ratio=0.5, tol=1e-15 ), marks=pytest.mark.xfail(reason="Missing importance sampling scheme"), ), LogisticRegressionCV(tol=1e-6), MultiTaskElasticNet(), MultiTaskElasticNetCV(), MultiTaskLasso(), MultiTaskLassoCV(), OrthogonalMatchingPursuit(), OrthogonalMatchingPursuitCV(), PoissonRegressor(), Ridge(), RidgeCV(), pytest.param( SGDRegressor(tol=1e-15), marks=pytest.mark.xfail(reason="Insufficient precision."), ), SGDRegressor(penalty="elasticnet", max_iter=10_000), TweedieRegressor(power=0), # same as Ridge ], ids=lambda x: x.__class__.__name__, ) @pytest.mark.parametrize("with_sample_weight", [False, True]) def test_balance_property(model, with_sample_weight, global_random_seed): # Test that sum(y_predicted) == sum(y_observed) on the training set. # This must hold for all linear models with deviance of an exponential disperson # family as loss and the corresponding canonical link if fit_intercept=True. # Examples: # - squared error and identity link (most linear models) # - Poisson deviance with log link # - log loss with logit link # This is known as balance property or unconditional calibration/unbiasedness. # For reference, see Corollary 3.18, 3.20 and Chapter 5.1.5 of # M.V. Wuthrich and M. Merz, "Statistical Foundations of Actuarial Learning and its # Applications" (June 3, 2022). http://doi.org/10.2139/ssrn.3822407 if ( with_sample_weight and "sample_weight" not in inspect.signature(model.fit).parameters.keys() ): pytest.skip("Estimator does not support sample_weight.") rel = 2e-4 # test precision if isinstance(model, SGDRegressor): rel = 1e-1 elif hasattr(model, "solver") and model.solver == "saga": rel = 1e-2 rng = np.random.RandomState(global_random_seed) n_train, n_features, n_targets = 100, 10, None if isinstance( model, (MultiTaskElasticNet, MultiTaskElasticNetCV, MultiTaskLasso, MultiTaskLassoCV), ): n_targets = 3 X = make_low_rank_matrix(n_samples=n_train, n_features=n_features, random_state=rng) if n_targets: coef = ( rng.uniform(low=-2, high=2, size=(n_features, n_targets)) / np.max(X, axis=0)[:, None] ) else: coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0) expectation = np.exp(X @ coef + 0.5) y = rng.poisson(lam=expectation) + 1 # strict positive, i.e. y > 0 if is_classifier(model): y = (y > expectation + 1).astype(np.float64) if with_sample_weight: sw = rng.uniform(low=1, high=10, size=y.shape[0]) else: sw = None model.set_params(fit_intercept=True) # to be sure if with_sample_weight: model.fit(X, y, sample_weight=sw) else: model.fit(X, y) # Assert balance property. if is_classifier(model): assert np.average(model.predict_proba(X)[:, 1], weights=sw) == pytest.approx( np.average(y, weights=sw), rel=rel ) else: assert np.average(model.predict(X), weights=sw, axis=0) == pytest.approx( np.average(y, weights=sw, axis=0), rel=rel )