"""Multi-layer Perceptron """ # Authors: Issam H. Laradji # Andreas Mueller # Jiyuan Qian # License: BSD 3 clause import warnings from abc import ABCMeta, abstractmethod from itertools import chain from numbers import Integral, Real import numpy as np import scipy.optimize from ..base import ( BaseEstimator, ClassifierMixin, RegressorMixin, _fit_context, is_classifier, ) from ..exceptions import ConvergenceWarning from ..metrics import accuracy_score, r2_score from ..model_selection import train_test_split from ..preprocessing import LabelBinarizer from ..utils import ( _safe_indexing, check_random_state, column_or_1d, gen_batches, shuffle, ) from ..utils._param_validation import Interval, Options, StrOptions from ..utils.extmath import safe_sparse_dot from ..utils.metaestimators import available_if from ..utils.multiclass import ( _check_partial_fit_first_call, type_of_target, unique_labels, ) from ..utils.optimize import _check_optimize_result from ..utils.validation import check_is_fitted from ._base import ACTIVATIONS, DERIVATIVES, LOSS_FUNCTIONS from ._stochastic_optimizers import AdamOptimizer, SGDOptimizer _STOCHASTIC_SOLVERS = ["sgd", "adam"] def _pack(coefs_, intercepts_): """Pack the parameters into a single vector.""" return np.hstack([l.ravel() for l in coefs_ + intercepts_]) class BaseMultilayerPerceptron(BaseEstimator, metaclass=ABCMeta): """Base class for MLP classification and regression. Warning: This class should not be used directly. Use derived classes instead. .. versionadded:: 0.18 """ _parameter_constraints: dict = { "hidden_layer_sizes": [ "array-like", Interval(Integral, 1, None, closed="left"), ], "activation": [StrOptions({"identity", "logistic", "tanh", "relu"})], "solver": [StrOptions({"lbfgs", "sgd", "adam"})], "alpha": [Interval(Real, 0, None, closed="left")], "batch_size": [ StrOptions({"auto"}), Interval(Integral, 1, None, closed="left"), ], "learning_rate": [StrOptions({"constant", "invscaling", "adaptive"})], "learning_rate_init": [Interval(Real, 0, None, closed="neither")], "power_t": [Interval(Real, 0, None, closed="left")], "max_iter": [Interval(Integral, 1, None, closed="left")], "shuffle": ["boolean"], "random_state": ["random_state"], "tol": [Interval(Real, 0, None, closed="left")], "verbose": ["verbose"], "warm_start": ["boolean"], "momentum": [Interval(Real, 0, 1, closed="both")], "nesterovs_momentum": ["boolean"], "early_stopping": ["boolean"], "validation_fraction": [Interval(Real, 0, 1, closed="left")], "beta_1": [Interval(Real, 0, 1, closed="left")], "beta_2": [Interval(Real, 0, 1, closed="left")], "epsilon": [Interval(Real, 0, None, closed="neither")], "n_iter_no_change": [ Interval(Integral, 1, None, closed="left"), Options(Real, {np.inf}), ], "max_fun": [Interval(Integral, 1, None, closed="left")], } @abstractmethod def __init__( self, hidden_layer_sizes, activation, solver, alpha, batch_size, learning_rate, learning_rate_init, power_t, max_iter, loss, shuffle, random_state, tol, verbose, warm_start, momentum, nesterovs_momentum, early_stopping, validation_fraction, beta_1, beta_2, epsilon, n_iter_no_change, max_fun, ): self.activation = activation self.solver = solver self.alpha = alpha self.batch_size = batch_size self.learning_rate = learning_rate self.learning_rate_init = learning_rate_init self.power_t = power_t self.max_iter = max_iter self.loss = loss self.hidden_layer_sizes = hidden_layer_sizes self.shuffle = shuffle self.random_state = random_state self.tol = tol self.verbose = verbose self.warm_start = warm_start self.momentum = momentum self.nesterovs_momentum = nesterovs_momentum self.early_stopping = early_stopping self.validation_fraction = validation_fraction self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon self.n_iter_no_change = n_iter_no_change self.max_fun = max_fun def _unpack(self, packed_parameters): """Extract the coefficients and intercepts from packed_parameters.""" for i in range(self.n_layers_ - 1): start, end, shape = self._coef_indptr[i] self.coefs_[i] = np.reshape(packed_parameters[start:end], shape) start, end = self._intercept_indptr[i] self.intercepts_[i] = packed_parameters[start:end] def _forward_pass(self, activations): """Perform a forward pass on the network by computing the values of the neurons in the hidden layers and the output layer. Parameters ---------- activations : list, length = n_layers - 1 The ith element of the list holds the values of the ith layer. """ hidden_activation = ACTIVATIONS[self.activation] # Iterate over the hidden layers for i in range(self.n_layers_ - 1): activations[i + 1] = safe_sparse_dot(activations[i], self.coefs_[i]) activations[i + 1] += self.intercepts_[i] # For the hidden layers if (i + 1) != (self.n_layers_ - 1): hidden_activation(activations[i + 1]) # For the last layer output_activation = ACTIVATIONS[self.out_activation_] output_activation(activations[i + 1]) return activations def _forward_pass_fast(self, X, check_input=True): """Predict using the trained model This is the same as _forward_pass but does not record the activations of all layers and only returns the last layer's activation. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input data. check_input : bool, default=True Perform input data validation or not. Returns ------- y_pred : ndarray of shape (n_samples,) or (n_samples, n_outputs) The decision function of the samples for each class in the model. """ if check_input: X = self._validate_data(X, accept_sparse=["csr", "csc"], reset=False) # Initialize first layer activation = X # Forward propagate hidden_activation = ACTIVATIONS[self.activation] for i in range(self.n_layers_ - 1): activation = safe_sparse_dot(activation, self.coefs_[i]) activation += self.intercepts_[i] if i != self.n_layers_ - 2: hidden_activation(activation) output_activation = ACTIVATIONS[self.out_activation_] output_activation(activation) return activation def _compute_loss_grad( self, layer, n_samples, activations, deltas, coef_grads, intercept_grads ): """Compute the gradient of loss with respect to coefs and intercept for specified layer. This function does backpropagation for the specified one layer. """ coef_grads[layer] = safe_sparse_dot(activations[layer].T, deltas[layer]) coef_grads[layer] += self.alpha * self.coefs_[layer] coef_grads[layer] /= n_samples intercept_grads[layer] = np.mean(deltas[layer], 0) def _loss_grad_lbfgs( self, packed_coef_inter, X, y, activations, deltas, coef_grads, intercept_grads ): """Compute the MLP loss function and its corresponding derivatives with respect to the different parameters given in the initialization. Returned gradients are packed in a single vector so it can be used in lbfgs Parameters ---------- packed_coef_inter : ndarray A vector comprising the flattened coefficients and intercepts. X : {array-like, sparse matrix} of shape (n_samples, n_features) The input data. y : ndarray of shape (n_samples,) The target values. activations : list, length = n_layers - 1 The ith element of the list holds the values of the ith layer. deltas : list, length = n_layers - 1 The ith element of the list holds the difference between the activations of the i + 1 layer and the backpropagated error. More specifically, deltas are gradients of loss with respect to z in each layer, where z = wx + b is the value of a particular layer before passing through the activation function coef_grads : list, length = n_layers - 1 The ith element contains the amount of change used to update the coefficient parameters of the ith layer in an iteration. intercept_grads : list, length = n_layers - 1 The ith element contains the amount of change used to update the intercept parameters of the ith layer in an iteration. Returns ------- loss : float grad : array-like, shape (number of nodes of all layers,) """ self._unpack(packed_coef_inter) loss, coef_grads, intercept_grads = self._backprop( X, y, activations, deltas, coef_grads, intercept_grads ) grad = _pack(coef_grads, intercept_grads) return loss, grad def _backprop(self, X, y, activations, deltas, coef_grads, intercept_grads): """Compute the MLP loss function and its corresponding derivatives with respect to each parameter: weights and bias vectors. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input data. y : ndarray of shape (n_samples,) The target values. activations : list, length = n_layers - 1 The ith element of the list holds the values of the ith layer. deltas : list, length = n_layers - 1 The ith element of the list holds the difference between the activations of the i + 1 layer and the backpropagated error. More specifically, deltas are gradients of loss with respect to z in each layer, where z = wx + b is the value of a particular layer before passing through the activation function coef_grads : list, length = n_layers - 1 The ith element contains the amount of change used to update the coefficient parameters of the ith layer in an iteration. intercept_grads : list, length = n_layers - 1 The ith element contains the amount of change used to update the intercept parameters of the ith layer in an iteration. Returns ------- loss : float coef_grads : list, length = n_layers - 1 intercept_grads : list, length = n_layers - 1 """ n_samples = X.shape[0] # Forward propagate activations = self._forward_pass(activations) # Get loss loss_func_name = self.loss if loss_func_name == "log_loss" and self.out_activation_ == "logistic": loss_func_name = "binary_log_loss" loss = LOSS_FUNCTIONS[loss_func_name](y, activations[-1]) # Add L2 regularization term to loss values = 0 for s in self.coefs_: s = s.ravel() values += np.dot(s, s) loss += (0.5 * self.alpha) * values / n_samples # Backward propagate last = self.n_layers_ - 2 # The calculation of delta[last] here works with following # combinations of output activation and loss function: # sigmoid and binary cross entropy, softmax and categorical cross # entropy, and identity with squared loss deltas[last] = activations[-1] - y # Compute gradient for the last layer self._compute_loss_grad( last, n_samples, activations, deltas, coef_grads, intercept_grads ) inplace_derivative = DERIVATIVES[self.activation] # Iterate over the hidden layers for i in range(self.n_layers_ - 2, 0, -1): deltas[i - 1] = safe_sparse_dot(deltas[i], self.coefs_[i].T) inplace_derivative(activations[i], deltas[i - 1]) self._compute_loss_grad( i - 1, n_samples, activations, deltas, coef_grads, intercept_grads ) return loss, coef_grads, intercept_grads def _initialize(self, y, layer_units, dtype): # set all attributes, allocate weights etc. for first call # Initialize parameters self.n_iter_ = 0 self.t_ = 0 self.n_outputs_ = y.shape[1] # Compute the number of layers self.n_layers_ = len(layer_units) # Output for regression if not is_classifier(self): self.out_activation_ = "identity" # Output for multi class elif self._label_binarizer.y_type_ == "multiclass": self.out_activation_ = "softmax" # Output for binary class and multi-label else: self.out_activation_ = "logistic" # Initialize coefficient and intercept layers self.coefs_ = [] self.intercepts_ = [] for i in range(self.n_layers_ - 1): coef_init, intercept_init = self._init_coef( layer_units[i], layer_units[i + 1], dtype ) self.coefs_.append(coef_init) self.intercepts_.append(intercept_init) if self.solver in _STOCHASTIC_SOLVERS: self.loss_curve_ = [] self._no_improvement_count = 0 if self.early_stopping: self.validation_scores_ = [] self.best_validation_score_ = -np.inf self.best_loss_ = None else: self.best_loss_ = np.inf self.validation_scores_ = None self.best_validation_score_ = None def _init_coef(self, fan_in, fan_out, dtype): # Use the initialization method recommended by # Glorot et al. factor = 6.0 if self.activation == "logistic": factor = 2.0 init_bound = np.sqrt(factor / (fan_in + fan_out)) # Generate weights and bias: coef_init = self._random_state.uniform( -init_bound, init_bound, (fan_in, fan_out) ) intercept_init = self._random_state.uniform(-init_bound, init_bound, fan_out) coef_init = coef_init.astype(dtype, copy=False) intercept_init = intercept_init.astype(dtype, copy=False) return coef_init, intercept_init def _fit(self, X, y, incremental=False): # Make sure self.hidden_layer_sizes is a list hidden_layer_sizes = self.hidden_layer_sizes if not hasattr(hidden_layer_sizes, "__iter__"): hidden_layer_sizes = [hidden_layer_sizes] hidden_layer_sizes = list(hidden_layer_sizes) if np.any(np.array(hidden_layer_sizes) <= 0): raise ValueError( "hidden_layer_sizes must be > 0, got %s." % hidden_layer_sizes ) first_pass = not hasattr(self, "coefs_") or ( not self.warm_start and not incremental ) X, y = self._validate_input(X, y, incremental, reset=first_pass) n_samples, n_features = X.shape # Ensure y is 2D if y.ndim == 1: y = y.reshape((-1, 1)) self.n_outputs_ = y.shape[1] layer_units = [n_features] + hidden_layer_sizes + [self.n_outputs_] # check random state self._random_state = check_random_state(self.random_state) if first_pass: # First time training the model self._initialize(y, layer_units, X.dtype) # Initialize lists activations = [X] + [None] * (len(layer_units) - 1) deltas = [None] * (len(activations) - 1) coef_grads = [ np.empty((n_fan_in_, n_fan_out_), dtype=X.dtype) for n_fan_in_, n_fan_out_ in zip(layer_units[:-1], layer_units[1:]) ] intercept_grads = [ np.empty(n_fan_out_, dtype=X.dtype) for n_fan_out_ in layer_units[1:] ] # Run the Stochastic optimization solver if self.solver in _STOCHASTIC_SOLVERS: self._fit_stochastic( X, y, activations, deltas, coef_grads, intercept_grads, layer_units, incremental, ) # Run the LBFGS solver elif self.solver == "lbfgs": self._fit_lbfgs( X, y, activations, deltas, coef_grads, intercept_grads, layer_units ) # validate parameter weights weights = chain(self.coefs_, self.intercepts_) if not all(np.isfinite(w).all() for w in weights): raise ValueError( "Solver produced non-finite parameter weights. The input data may" " contain large values and need to be preprocessed." ) return self def _fit_lbfgs( self, X, y, activations, deltas, coef_grads, intercept_grads, layer_units ): # Store meta information for the parameters self._coef_indptr = [] self._intercept_indptr = [] start = 0 # Save sizes and indices of coefficients for faster unpacking for i in range(self.n_layers_ - 1): n_fan_in, n_fan_out = layer_units[i], layer_units[i + 1] end = start + (n_fan_in * n_fan_out) self._coef_indptr.append((start, end, (n_fan_in, n_fan_out))) start = end # Save sizes and indices of intercepts for faster unpacking for i in range(self.n_layers_ - 1): end = start + layer_units[i + 1] self._intercept_indptr.append((start, end)) start = end # Run LBFGS packed_coef_inter = _pack(self.coefs_, self.intercepts_) if self.verbose is True or self.verbose >= 1: iprint = 1 else: iprint = -1 opt_res = scipy.optimize.minimize( self._loss_grad_lbfgs, packed_coef_inter, method="L-BFGS-B", jac=True, options={ "maxfun": self.max_fun, "maxiter": self.max_iter, "iprint": iprint, "gtol": self.tol, }, args=(X, y, activations, deltas, coef_grads, intercept_grads), ) self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) self.loss_ = opt_res.fun self._unpack(opt_res.x) def _fit_stochastic( self, X, y, activations, deltas, coef_grads, intercept_grads, layer_units, incremental, ): params = self.coefs_ + self.intercepts_ if not incremental or not hasattr(self, "_optimizer"): if self.solver == "sgd": self._optimizer = SGDOptimizer( params, self.learning_rate_init, self.learning_rate, self.momentum, self.nesterovs_momentum, self.power_t, ) elif self.solver == "adam": self._optimizer = AdamOptimizer( params, self.learning_rate_init, self.beta_1, self.beta_2, self.epsilon, ) # early_stopping in partial_fit doesn't make sense if self.early_stopping and incremental: raise ValueError("partial_fit does not support early_stopping=True") early_stopping = self.early_stopping if early_stopping: # don't stratify in multilabel classification should_stratify = is_classifier(self) and self.n_outputs_ == 1 stratify = y if should_stratify else None X, X_val, y, y_val = train_test_split( X, y, random_state=self._random_state, test_size=self.validation_fraction, stratify=stratify, ) if is_classifier(self): y_val = self._label_binarizer.inverse_transform(y_val) else: X_val = None y_val = None n_samples = X.shape[0] sample_idx = np.arange(n_samples, dtype=int) if self.batch_size == "auto": batch_size = min(200, n_samples) else: if self.batch_size > n_samples: warnings.warn( "Got `batch_size` less than 1 or larger than " "sample size. It is going to be clipped" ) batch_size = np.clip(self.batch_size, 1, n_samples) try: self.n_iter_ = 0 for it in range(self.max_iter): if self.shuffle: # Only shuffle the sample indices instead of X and y to # reduce the memory footprint. These indices will be used # to slice the X and y. sample_idx = shuffle(sample_idx, random_state=self._random_state) accumulated_loss = 0.0 for batch_slice in gen_batches(n_samples, batch_size): if self.shuffle: X_batch = _safe_indexing(X, sample_idx[batch_slice]) y_batch = y[sample_idx[batch_slice]] else: X_batch = X[batch_slice] y_batch = y[batch_slice] activations[0] = X_batch batch_loss, coef_grads, intercept_grads = self._backprop( X_batch, y_batch, activations, deltas, coef_grads, intercept_grads, ) accumulated_loss += batch_loss * ( batch_slice.stop - batch_slice.start ) # update weights grads = coef_grads + intercept_grads self._optimizer.update_params(params, grads) self.n_iter_ += 1 self.loss_ = accumulated_loss / X.shape[0] self.t_ += n_samples self.loss_curve_.append(self.loss_) if self.verbose: print("Iteration %d, loss = %.8f" % (self.n_iter_, self.loss_)) # update no_improvement_count based on training loss or # validation score according to early_stopping self._update_no_improvement_count(early_stopping, X_val, y_val) # for learning rate that needs to be updated at iteration end self._optimizer.iteration_ends(self.t_) if self._no_improvement_count > self.n_iter_no_change: # not better than last `n_iter_no_change` iterations by tol # stop or decrease learning rate if early_stopping: msg = ( "Validation score did not improve more than " "tol=%f for %d consecutive epochs." % (self.tol, self.n_iter_no_change) ) else: msg = ( "Training loss did not improve more than tol=%f" " for %d consecutive epochs." % (self.tol, self.n_iter_no_change) ) is_stopping = self._optimizer.trigger_stopping(msg, self.verbose) if is_stopping: break else: self._no_improvement_count = 0 if incremental: break if self.n_iter_ == self.max_iter: warnings.warn( "Stochastic Optimizer: Maximum iterations (%d) " "reached and the optimization hasn't converged yet." % self.max_iter, ConvergenceWarning, ) except KeyboardInterrupt: warnings.warn("Training interrupted by user.") if early_stopping: # restore best weights self.coefs_ = self._best_coefs self.intercepts_ = self._best_intercepts def _update_no_improvement_count(self, early_stopping, X_val, y_val): if early_stopping: # compute validation score, use that for stopping self.validation_scores_.append(self._score(X_val, y_val)) if self.verbose: print("Validation score: %f" % self.validation_scores_[-1]) # update best parameters # use validation_scores_, not loss_curve_ # let's hope no-one overloads .score with mse last_valid_score = self.validation_scores_[-1] if last_valid_score < (self.best_validation_score_ + self.tol): self._no_improvement_count += 1 else: self._no_improvement_count = 0 if last_valid_score > self.best_validation_score_: self.best_validation_score_ = last_valid_score self._best_coefs = [c.copy() for c in self.coefs_] self._best_intercepts = [i.copy() for i in self.intercepts_] else: if self.loss_curve_[-1] > self.best_loss_ - self.tol: self._no_improvement_count += 1 else: self._no_improvement_count = 0 if self.loss_curve_[-1] < self.best_loss_: self.best_loss_ = self.loss_curve_[-1] @_fit_context(prefer_skip_nested_validation=True) def fit(self, X, y): """Fit the model to data matrix X and target(s) y. Parameters ---------- X : ndarray or sparse matrix of shape (n_samples, n_features) The input data. y : ndarray of shape (n_samples,) or (n_samples, n_outputs) The target values (class labels in classification, real numbers in regression). Returns ------- self : object Returns a trained MLP model. """ return self._fit(X, y, incremental=False) def _check_solver(self): if self.solver not in _STOCHASTIC_SOLVERS: raise AttributeError( "partial_fit is only available for stochastic" " optimizers. %s is not stochastic." % self.solver ) return True class MLPClassifier(ClassifierMixin, BaseMultilayerPerceptron): """Multi-layer Perceptron classifier. This model optimizes the log-loss function using LBFGS or stochastic gradient descent. .. versionadded:: 0.18 Parameters ---------- hidden_layer_sizes : array-like of shape(n_layers - 2,), default=(100,) The ith element represents the number of neurons in the ith hidden layer. activation : {'identity', 'logistic', 'tanh', 'relu'}, default='relu' Activation function for the hidden layer. - 'identity', no-op activation, useful to implement linear bottleneck, returns f(x) = x - 'logistic', the logistic sigmoid function, returns f(x) = 1 / (1 + exp(-x)). - 'tanh', the hyperbolic tan function, returns f(x) = tanh(x). - 'relu', the rectified linear unit function, returns f(x) = max(0, x) solver : {'lbfgs', 'sgd', 'adam'}, default='adam' The solver for weight optimization. - 'lbfgs' is an optimizer in the family of quasi-Newton methods. - 'sgd' refers to stochastic gradient descent. - 'adam' refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik, and Jimmy Ba Note: The default solver 'adam' works pretty well on relatively large datasets (with thousands of training samples or more) in terms of both training time and validation score. For small datasets, however, 'lbfgs' can converge faster and perform better. alpha : float, default=0.0001 Strength of the L2 regularization term. The L2 regularization term is divided by the sample size when added to the loss. batch_size : int, default='auto' Size of minibatches for stochastic optimizers. If the solver is 'lbfgs', the classifier will not use minibatch. When set to "auto", `batch_size=min(200, n_samples)`. learning_rate : {'constant', 'invscaling', 'adaptive'}, default='constant' Learning rate schedule for weight updates. - 'constant' is a constant learning rate given by 'learning_rate_init'. - 'invscaling' gradually decreases the learning rate at each time step 't' using an inverse scaling exponent of 'power_t'. effective_learning_rate = learning_rate_init / pow(t, power_t) - 'adaptive' keeps the learning rate constant to 'learning_rate_init' as long as training loss keeps decreasing. Each time two consecutive epochs fail to decrease training loss by at least tol, or fail to increase validation score by at least tol if 'early_stopping' is on, the current learning rate is divided by 5. Only used when ``solver='sgd'``. learning_rate_init : float, default=0.001 The initial learning rate used. It controls the step-size in updating the weights. Only used when solver='sgd' or 'adam'. power_t : float, default=0.5 The exponent for inverse scaling learning rate. It is used in updating effective learning rate when the learning_rate is set to 'invscaling'. Only used when solver='sgd'. max_iter : int, default=200 Maximum number of iterations. The solver iterates until convergence (determined by 'tol') or this number of iterations. For stochastic solvers ('sgd', 'adam'), note that this determines the number of epochs (how many times each data point will be used), not the number of gradient steps. shuffle : bool, default=True Whether to shuffle samples in each iteration. Only used when solver='sgd' or 'adam'. random_state : int, RandomState instance, default=None Determines random number generation for weights and bias initialization, train-test split if early stopping is used, and batch sampling when solver='sgd' or 'adam'. Pass an int for reproducible results across multiple function calls. See :term:`Glossary `. tol : float, default=1e-4 Tolerance for the optimization. When the loss or score is not improving by at least ``tol`` for ``n_iter_no_change`` consecutive iterations, unless ``learning_rate`` is set to 'adaptive', convergence is considered to be reached and training stops. verbose : bool, default=False Whether to print progress messages to stdout. warm_start : bool, default=False When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See :term:`the Glossary `. momentum : float, default=0.9 Momentum for gradient descent update. Should be between 0 and 1. Only used when solver='sgd'. nesterovs_momentum : bool, default=True Whether to use Nesterov's momentum. Only used when solver='sgd' and momentum > 0. early_stopping : bool, default=False Whether to use early stopping to terminate training when validation score is not improving. If set to true, it will automatically set aside 10% of training data as validation and terminate training when validation score is not improving by at least ``tol`` for ``n_iter_no_change`` consecutive epochs. The split is stratified, except in a multilabel setting. If early stopping is False, then the training stops when the training loss does not improve by more than tol for n_iter_no_change consecutive passes over the training set. Only effective when solver='sgd' or 'adam'. validation_fraction : float, default=0.1 The proportion of training data to set aside as validation set for early stopping. Must be between 0 and 1. Only used if early_stopping is True. beta_1 : float, default=0.9 Exponential decay rate for estimates of first moment vector in adam, should be in [0, 1). Only used when solver='adam'. beta_2 : float, default=0.999 Exponential decay rate for estimates of second moment vector in adam, should be in [0, 1). Only used when solver='adam'. epsilon : float, default=1e-8 Value for numerical stability in adam. Only used when solver='adam'. n_iter_no_change : int, default=10 Maximum number of epochs to not meet ``tol`` improvement. Only effective when solver='sgd' or 'adam'. .. versionadded:: 0.20 max_fun : int, default=15000 Only used when solver='lbfgs'. Maximum number of loss function calls. The solver iterates until convergence (determined by 'tol'), number of iterations reaches max_iter, or this number of loss function calls. Note that number of loss function calls will be greater than or equal to the number of iterations for the `MLPClassifier`. .. versionadded:: 0.22 Attributes ---------- classes_ : ndarray or list of ndarray of shape (n_classes,) Class labels for each output. loss_ : float The current loss computed with the loss function. best_loss_ : float or None The minimum loss reached by the solver throughout fitting. If `early_stopping=True`, this attribute is set to `None`. Refer to the `best_validation_score_` fitted attribute instead. loss_curve_ : list of shape (`n_iter_`,) The ith element in the list represents the loss at the ith iteration. validation_scores_ : list of shape (`n_iter_`,) or None The score at each iteration on a held-out validation set. The score reported is the accuracy score. Only available if `early_stopping=True`, otherwise the attribute is set to `None`. best_validation_score_ : float or None The best validation score (i.e. accuracy score) that triggered the early stopping. Only available if `early_stopping=True`, otherwise the attribute is set to `None`. t_ : int The number of training samples seen by the solver during fitting. coefs_ : list of shape (n_layers - 1,) The ith element in the list represents the weight matrix corresponding to layer i. intercepts_ : list of shape (n_layers - 1,) The ith element in the list represents the bias vector corresponding to layer i + 1. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_iter_ : int The number of iterations the solver has run. n_layers_ : int Number of layers. n_outputs_ : int Number of outputs. out_activation_ : str Name of the output activation function. See Also -------- MLPRegressor : Multi-layer Perceptron regressor. BernoulliRBM : Bernoulli Restricted Boltzmann Machine (RBM). Notes ----- MLPClassifier trains iteratively since at each time step the partial derivatives of the loss function with respect to the model parameters are computed to update the parameters. It can also have a regularization term added to the loss function that shrinks model parameters to prevent overfitting. This implementation works with data represented as dense numpy arrays or sparse scipy arrays of floating point values. References ---------- Hinton, Geoffrey E. "Connectionist learning procedures." Artificial intelligence 40.1 (1989): 185-234. Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." International Conference on Artificial Intelligence and Statistics. 2010. :arxiv:`He, Kaiming, et al (2015). "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." <1502.01852>` :arxiv:`Kingma, Diederik, and Jimmy Ba (2014) "Adam: A method for stochastic optimization." <1412.6980>` Examples -------- >>> from sklearn.neural_network import MLPClassifier >>> from sklearn.datasets import make_classification >>> from sklearn.model_selection import train_test_split >>> X, y = make_classification(n_samples=100, random_state=1) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, ... random_state=1) >>> clf = MLPClassifier(random_state=1, max_iter=300).fit(X_train, y_train) >>> clf.predict_proba(X_test[:1]) array([[0.038..., 0.961...]]) >>> clf.predict(X_test[:5, :]) array([1, 0, 1, 0, 1]) >>> clf.score(X_test, y_test) 0.8... """ def __init__( self, hidden_layer_sizes=(100,), activation="relu", *, solver="adam", alpha=0.0001, batch_size="auto", learning_rate="constant", learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=1e-4, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-8, n_iter_no_change=10, max_fun=15000, ): super().__init__( hidden_layer_sizes=hidden_layer_sizes, activation=activation, solver=solver, alpha=alpha, batch_size=batch_size, learning_rate=learning_rate, learning_rate_init=learning_rate_init, power_t=power_t, max_iter=max_iter, loss="log_loss", shuffle=shuffle, random_state=random_state, tol=tol, verbose=verbose, warm_start=warm_start, momentum=momentum, nesterovs_momentum=nesterovs_momentum, early_stopping=early_stopping, validation_fraction=validation_fraction, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, n_iter_no_change=n_iter_no_change, max_fun=max_fun, ) def _validate_input(self, X, y, incremental, reset): X, y = self._validate_data( X, y, accept_sparse=["csr", "csc"], multi_output=True, dtype=(np.float64, np.float32), reset=reset, ) if y.ndim == 2 and y.shape[1] == 1: y = column_or_1d(y, warn=True) # Matrix of actions to be taken under the possible combinations: # The case that incremental == True and classes_ not defined is # already checked by _check_partial_fit_first_call that is called # in _partial_fit below. # The cases are already grouped into the respective if blocks below. # # incremental warm_start classes_ def action # 0 0 0 define classes_ # 0 1 0 define classes_ # 0 0 1 redefine classes_ # # 0 1 1 check compat warm_start # 1 1 1 check compat warm_start # # 1 0 1 check compat last fit # # Note the reliance on short-circuiting here, so that the second # or part implies that classes_ is defined. if (not hasattr(self, "classes_")) or (not self.warm_start and not incremental): self._label_binarizer = LabelBinarizer() self._label_binarizer.fit(y) self.classes_ = self._label_binarizer.classes_ else: classes = unique_labels(y) if self.warm_start: if set(classes) != set(self.classes_): raise ValueError( "warm_start can only be used where `y` has the same " "classes as in the previous call to fit. Previously " f"got {self.classes_}, `y` has {classes}" ) elif len(np.setdiff1d(classes, self.classes_, assume_unique=True)): raise ValueError( "`y` has classes not in `self.classes_`. " f"`self.classes_` has {self.classes_}. 'y' has {classes}." ) # This downcast to bool is to prevent upcasting when working with # float32 data y = self._label_binarizer.transform(y).astype(bool) return X, y def predict(self, X): """Predict using the multi-layer perceptron classifier. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input data. Returns ------- y : ndarray, shape (n_samples,) or (n_samples, n_classes) The predicted classes. """ check_is_fitted(self) return self._predict(X) def _predict(self, X, check_input=True): """Private predict method with optional input validation""" y_pred = self._forward_pass_fast(X, check_input=check_input) if self.n_outputs_ == 1: y_pred = y_pred.ravel() return self._label_binarizer.inverse_transform(y_pred) def _score(self, X, y): """Private score method without input validation""" # Input validation would remove feature names, so we disable it return accuracy_score(y, self._predict(X, check_input=False)) @available_if(lambda est: est._check_solver()) @_fit_context(prefer_skip_nested_validation=True) def partial_fit(self, X, y, classes=None): """Update the model with a single iteration over the given data. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input data. y : array-like of shape (n_samples,) The target values. classes : array of shape (n_classes,), default=None Classes across all calls to partial_fit. Can be obtained via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. Returns ------- self : object Trained MLP model. """ if _check_partial_fit_first_call(self, classes): self._label_binarizer = LabelBinarizer() if type_of_target(y).startswith("multilabel"): self._label_binarizer.fit(y) else: self._label_binarizer.fit(classes) return self._fit(X, y, incremental=True) def predict_log_proba(self, X): """Return the log of probability estimates. Parameters ---------- X : ndarray of shape (n_samples, n_features) The input data. Returns ------- log_y_prob : ndarray of shape (n_samples, n_classes) The predicted log-probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. Equivalent to `log(predict_proba(X))`. """ y_prob = self.predict_proba(X) return np.log(y_prob, out=y_prob) def predict_proba(self, X): """Probability estimates. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input data. Returns ------- y_prob : ndarray of shape (n_samples, n_classes) The predicted probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. """ check_is_fitted(self) y_pred = self._forward_pass_fast(X) if self.n_outputs_ == 1: y_pred = y_pred.ravel() if y_pred.ndim == 1: return np.vstack([1 - y_pred, y_pred]).T else: return y_pred def _more_tags(self): return {"multilabel": True} class MLPRegressor(RegressorMixin, BaseMultilayerPerceptron): """Multi-layer Perceptron regressor. This model optimizes the squared error using LBFGS or stochastic gradient descent. .. versionadded:: 0.18 Parameters ---------- hidden_layer_sizes : array-like of shape(n_layers - 2,), default=(100,) The ith element represents the number of neurons in the ith hidden layer. activation : {'identity', 'logistic', 'tanh', 'relu'}, default='relu' Activation function for the hidden layer. - 'identity', no-op activation, useful to implement linear bottleneck, returns f(x) = x - 'logistic', the logistic sigmoid function, returns f(x) = 1 / (1 + exp(-x)). - 'tanh', the hyperbolic tan function, returns f(x) = tanh(x). - 'relu', the rectified linear unit function, returns f(x) = max(0, x) solver : {'lbfgs', 'sgd', 'adam'}, default='adam' The solver for weight optimization. - 'lbfgs' is an optimizer in the family of quasi-Newton methods. - 'sgd' refers to stochastic gradient descent. - 'adam' refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik, and Jimmy Ba Note: The default solver 'adam' works pretty well on relatively large datasets (with thousands of training samples or more) in terms of both training time and validation score. For small datasets, however, 'lbfgs' can converge faster and perform better. alpha : float, default=0.0001 Strength of the L2 regularization term. The L2 regularization term is divided by the sample size when added to the loss. batch_size : int, default='auto' Size of minibatches for stochastic optimizers. If the solver is 'lbfgs', the regressor will not use minibatch. When set to "auto", `batch_size=min(200, n_samples)`. learning_rate : {'constant', 'invscaling', 'adaptive'}, default='constant' Learning rate schedule for weight updates. - 'constant' is a constant learning rate given by 'learning_rate_init'. - 'invscaling' gradually decreases the learning rate ``learning_rate_`` at each time step 't' using an inverse scaling exponent of 'power_t'. effective_learning_rate = learning_rate_init / pow(t, power_t) - 'adaptive' keeps the learning rate constant to 'learning_rate_init' as long as training loss keeps decreasing. Each time two consecutive epochs fail to decrease training loss by at least tol, or fail to increase validation score by at least tol if 'early_stopping' is on, the current learning rate is divided by 5. Only used when solver='sgd'. learning_rate_init : float, default=0.001 The initial learning rate used. It controls the step-size in updating the weights. Only used when solver='sgd' or 'adam'. power_t : float, default=0.5 The exponent for inverse scaling learning rate. It is used in updating effective learning rate when the learning_rate is set to 'invscaling'. Only used when solver='sgd'. max_iter : int, default=200 Maximum number of iterations. The solver iterates until convergence (determined by 'tol') or this number of iterations. For stochastic solvers ('sgd', 'adam'), note that this determines the number of epochs (how many times each data point will be used), not the number of gradient steps. shuffle : bool, default=True Whether to shuffle samples in each iteration. Only used when solver='sgd' or 'adam'. random_state : int, RandomState instance, default=None Determines random number generation for weights and bias initialization, train-test split if early stopping is used, and batch sampling when solver='sgd' or 'adam'. Pass an int for reproducible results across multiple function calls. See :term:`Glossary `. tol : float, default=1e-4 Tolerance for the optimization. When the loss or score is not improving by at least ``tol`` for ``n_iter_no_change`` consecutive iterations, unless ``learning_rate`` is set to 'adaptive', convergence is considered to be reached and training stops. verbose : bool, default=False Whether to print progress messages to stdout. warm_start : bool, default=False When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See :term:`the Glossary `. momentum : float, default=0.9 Momentum for gradient descent update. Should be between 0 and 1. Only used when solver='sgd'. nesterovs_momentum : bool, default=True Whether to use Nesterov's momentum. Only used when solver='sgd' and momentum > 0. early_stopping : bool, default=False Whether to use early stopping to terminate training when validation score is not improving. If set to True, it will automatically set aside ``validation_fraction`` of training data as validation and terminate training when validation score is not improving by at least ``tol`` for ``n_iter_no_change`` consecutive epochs. Only effective when solver='sgd' or 'adam'. validation_fraction : float, default=0.1 The proportion of training data to set aside as validation set for early stopping. Must be between 0 and 1. Only used if early_stopping is True. beta_1 : float, default=0.9 Exponential decay rate for estimates of first moment vector in adam, should be in [0, 1). Only used when solver='adam'. beta_2 : float, default=0.999 Exponential decay rate for estimates of second moment vector in adam, should be in [0, 1). Only used when solver='adam'. epsilon : float, default=1e-8 Value for numerical stability in adam. Only used when solver='adam'. n_iter_no_change : int, default=10 Maximum number of epochs to not meet ``tol`` improvement. Only effective when solver='sgd' or 'adam'. .. versionadded:: 0.20 max_fun : int, default=15000 Only used when solver='lbfgs'. Maximum number of function calls. The solver iterates until convergence (determined by ``tol``), number of iterations reaches max_iter, or this number of function calls. Note that number of function calls will be greater than or equal to the number of iterations for the MLPRegressor. .. versionadded:: 0.22 Attributes ---------- loss_ : float The current loss computed with the loss function. best_loss_ : float The minimum loss reached by the solver throughout fitting. If `early_stopping=True`, this attribute is set to `None`. Refer to the `best_validation_score_` fitted attribute instead. Only accessible when solver='sgd' or 'adam'. loss_curve_ : list of shape (`n_iter_`,) Loss value evaluated at the end of each training step. The ith element in the list represents the loss at the ith iteration. Only accessible when solver='sgd' or 'adam'. validation_scores_ : list of shape (`n_iter_`,) or None The score at each iteration on a held-out validation set. The score reported is the R2 score. Only available if `early_stopping=True`, otherwise the attribute is set to `None`. Only accessible when solver='sgd' or 'adam'. best_validation_score_ : float or None The best validation score (i.e. R2 score) that triggered the early stopping. Only available if `early_stopping=True`, otherwise the attribute is set to `None`. Only accessible when solver='sgd' or 'adam'. t_ : int The number of training samples seen by the solver during fitting. Mathematically equals `n_iters * X.shape[0]`, it means `time_step` and it is used by optimizer's learning rate scheduler. coefs_ : list of shape (n_layers - 1,) The ith element in the list represents the weight matrix corresponding to layer i. intercepts_ : list of shape (n_layers - 1,) The ith element in the list represents the bias vector corresponding to layer i + 1. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_iter_ : int The number of iterations the solver has run. n_layers_ : int Number of layers. n_outputs_ : int Number of outputs. out_activation_ : str Name of the output activation function. See Also -------- BernoulliRBM : Bernoulli Restricted Boltzmann Machine (RBM). MLPClassifier : Multi-layer Perceptron classifier. sklearn.linear_model.SGDRegressor : Linear model fitted by minimizing a regularized empirical loss with SGD. Notes ----- MLPRegressor trains iteratively since at each time step the partial derivatives of the loss function with respect to the model parameters are computed to update the parameters. It can also have a regularization term added to the loss function that shrinks model parameters to prevent overfitting. This implementation works with data represented as dense and sparse numpy arrays of floating point values. References ---------- Hinton, Geoffrey E. "Connectionist learning procedures." Artificial intelligence 40.1 (1989): 185-234. Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." International Conference on Artificial Intelligence and Statistics. 2010. :arxiv:`He, Kaiming, et al (2015). "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." <1502.01852>` :arxiv:`Kingma, Diederik, and Jimmy Ba (2014) "Adam: A method for stochastic optimization." <1412.6980>` Examples -------- >>> from sklearn.neural_network import MLPRegressor >>> from sklearn.datasets import make_regression >>> from sklearn.model_selection import train_test_split >>> X, y = make_regression(n_samples=200, random_state=1) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, ... random_state=1) >>> regr = MLPRegressor(random_state=1, max_iter=500).fit(X_train, y_train) >>> regr.predict(X_test[:2]) array([-0.9..., -7.1...]) >>> regr.score(X_test, y_test) 0.4... """ def __init__( self, hidden_layer_sizes=(100,), activation="relu", *, solver="adam", alpha=0.0001, batch_size="auto", learning_rate="constant", learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=1e-4, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-8, n_iter_no_change=10, max_fun=15000, ): super().__init__( hidden_layer_sizes=hidden_layer_sizes, activation=activation, solver=solver, alpha=alpha, batch_size=batch_size, learning_rate=learning_rate, learning_rate_init=learning_rate_init, power_t=power_t, max_iter=max_iter, loss="squared_error", shuffle=shuffle, random_state=random_state, tol=tol, verbose=verbose, warm_start=warm_start, momentum=momentum, nesterovs_momentum=nesterovs_momentum, early_stopping=early_stopping, validation_fraction=validation_fraction, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, n_iter_no_change=n_iter_no_change, max_fun=max_fun, ) def predict(self, X): """Predict using the multi-layer perceptron model. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input data. Returns ------- y : ndarray of shape (n_samples, n_outputs) The predicted values. """ check_is_fitted(self) return self._predict(X) def _predict(self, X, check_input=True): """Private predict method with optional input validation""" y_pred = self._forward_pass_fast(X, check_input=check_input) if y_pred.shape[1] == 1: return y_pred.ravel() return y_pred def _score(self, X, y): """Private score method without input validation""" # Input validation would remove feature names, so we disable it y_pred = self._predict(X, check_input=False) return r2_score(y, y_pred) def _validate_input(self, X, y, incremental, reset): X, y = self._validate_data( X, y, accept_sparse=["csr", "csc"], multi_output=True, y_numeric=True, dtype=(np.float64, np.float32), reset=reset, ) if y.ndim == 2 and y.shape[1] == 1: y = column_or_1d(y, warn=True) return X, y @available_if(lambda est: est._check_solver) @_fit_context(prefer_skip_nested_validation=True) def partial_fit(self, X, y): """Update the model with a single iteration over the given data. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input data. y : ndarray of shape (n_samples,) The target values. Returns ------- self : object Trained MLP model. """ return self._fit(X, y, incremental=True)