import numpy as np import pytest from sklearn.neural_network._base import binary_log_loss, log_loss def test_binary_log_loss_1_prob_finite(): # y_proba is equal to one should result in a finite logloss y_true = np.array([[0, 0, 1]]).T y_prob = np.array([[0.9, 1.0, 1.0]]).T loss = binary_log_loss(y_true, y_prob) assert np.isfinite(loss) @pytest.mark.parametrize( "y_true, y_prob", [ ( np.array([[1, 0, 0], [0, 1, 0]]), np.array([[0.0, 1.0, 0.0], [0.9, 0.05, 0.05]]), ), (np.array([[0, 0, 1]]).T, np.array([[0.9, 1.0, 1.0]]).T), ], ) def test_log_loss_1_prob_finite(y_true, y_prob): # y_proba is equal to 1 should result in a finite logloss loss = log_loss(y_true, y_prob) assert np.isfinite(loss)