import numpy as np import pytest from scipy import sparse from sklearn import base, datasets, linear_model, svm from sklearn.datasets import load_digits, make_blobs, make_classification from sklearn.exceptions import ConvergenceWarning from sklearn.svm.tests import test_svm from sklearn.utils._testing import ( assert_allclose, assert_array_almost_equal, assert_array_equal, ignore_warnings, skip_if_32bit, ) from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils.fixes import ( CSR_CONTAINERS, DOK_CONTAINERS, LIL_CONTAINERS, ) # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2 X2 = np.array( [ [0, 0, 0], [1, 1, 1], [2, 0, 0], [0, 0, 2], [3, 3, 3], ] ) Y2 = [1, 2, 2, 2, 3] T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]]) true_result2 = [1, 2, 3] iris = datasets.load_iris() rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] X_blobs, y_blobs = make_blobs(n_samples=100, centers=10, random_state=0) def check_svm_model_equal(dense_svm, X_train, y_train, X_test): # Use the original svm model for dense fit and clone an exactly same # svm model for sparse fit sparse_svm = base.clone(dense_svm) dense_svm.fit(X_train.toarray(), y_train) if sparse.issparse(X_test): X_test_dense = X_test.toarray() else: X_test_dense = X_test sparse_svm.fit(X_train, y_train) assert sparse.issparse(sparse_svm.support_vectors_) assert sparse.issparse(sparse_svm.dual_coef_) assert_allclose(dense_svm.support_vectors_, sparse_svm.support_vectors_.toarray()) assert_allclose(dense_svm.dual_coef_, sparse_svm.dual_coef_.toarray()) if dense_svm.kernel == "linear": assert sparse.issparse(sparse_svm.coef_) assert_array_almost_equal(dense_svm.coef_, sparse_svm.coef_.toarray()) assert_allclose(dense_svm.support_, sparse_svm.support_) assert_allclose(dense_svm.predict(X_test_dense), sparse_svm.predict(X_test)) assert_array_almost_equal( dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test) ) assert_array_almost_equal( dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test_dense), ) if isinstance(dense_svm, svm.OneClassSVM): msg = "cannot use sparse input in 'OneClassSVM' trained on dense data" else: assert_array_almost_equal( dense_svm.predict_proba(X_test_dense), sparse_svm.predict_proba(X_test), decimal=4, ) msg = "cannot use sparse input in 'SVC' trained on dense data" if sparse.issparse(X_test): with pytest.raises(ValueError, match=msg): dense_svm.predict(X_test) @skip_if_32bit @pytest.mark.parametrize( "X_train, y_train, X_test", [ [X, Y, T], [X2, Y2, T2], [X_blobs[:80], y_blobs[:80], X_blobs[80:]], [iris.data, iris.target, iris.data], ], ) @pytest.mark.parametrize("kernel", ["linear", "poly", "rbf", "sigmoid"]) @pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + LIL_CONTAINERS) def test_svc(X_train, y_train, X_test, kernel, sparse_container): """Check that sparse SVC gives the same result as SVC.""" X_train = sparse_container(X_train) clf = svm.SVC( gamma=1, kernel=kernel, probability=True, random_state=0, decision_function_shape="ovo", ) check_svm_model_equal(clf, X_train, y_train, X_test) @pytest.mark.parametrize("csr_container", CSR_CONTAINERS) def test_unsorted_indices(csr_container): # test that the result with sorted and unsorted indices in csr is the same # we use a subset of digits as iris, blobs or make_classification didn't # show the problem X, y = load_digits(return_X_y=True) X_test = csr_container(X[50:100]) X, y = X[:50], y[:50] X_sparse = csr_container(X) coef_dense = ( svm.SVC(kernel="linear", probability=True, random_state=0).fit(X, y).coef_ ) sparse_svc = svm.SVC(kernel="linear", probability=True, random_state=0).fit( X_sparse, y ) coef_sorted = sparse_svc.coef_ # make sure dense and sparse SVM give the same result assert_allclose(coef_dense, coef_sorted.toarray()) # reverse each row's indices def scramble_indices(X): new_data = [] new_indices = [] for i in range(1, len(X.indptr)): row_slice = slice(*X.indptr[i - 1 : i + 1]) new_data.extend(X.data[row_slice][::-1]) new_indices.extend(X.indices[row_slice][::-1]) return csr_container((new_data, new_indices, X.indptr), shape=X.shape) X_sparse_unsorted = scramble_indices(X_sparse) X_test_unsorted = scramble_indices(X_test) assert not X_sparse_unsorted.has_sorted_indices assert not X_test_unsorted.has_sorted_indices unsorted_svc = svm.SVC(kernel="linear", probability=True, random_state=0).fit( X_sparse_unsorted, y ) coef_unsorted = unsorted_svc.coef_ # make sure unsorted indices give same result assert_allclose(coef_unsorted.toarray(), coef_sorted.toarray()) assert_allclose( sparse_svc.predict_proba(X_test_unsorted), sparse_svc.predict_proba(X_test) ) @pytest.mark.parametrize("lil_container", LIL_CONTAINERS) def test_svc_with_custom_kernel(lil_container): def kfunc(x, y): return safe_sparse_dot(x, y.T) X_sp = lil_container(X) clf_lin = svm.SVC(kernel="linear").fit(X_sp, Y) clf_mylin = svm.SVC(kernel=kfunc).fit(X_sp, Y) assert_array_equal(clf_lin.predict(X_sp), clf_mylin.predict(X_sp)) @skip_if_32bit @pytest.mark.parametrize("csr_container", CSR_CONTAINERS) @pytest.mark.parametrize("kernel", ["linear", "poly", "rbf"]) def test_svc_iris(csr_container, kernel): # Test the sparse SVC with the iris dataset iris_data_sp = csr_container(iris.data) sp_clf = svm.SVC(kernel=kernel).fit(iris_data_sp, iris.target) clf = svm.SVC(kernel=kernel).fit(iris.data, iris.target) assert_allclose(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_allclose(clf.dual_coef_, sp_clf.dual_coef_.toarray()) assert_allclose(clf.predict(iris.data), sp_clf.predict(iris_data_sp)) if kernel == "linear": assert_allclose(clf.coef_, sp_clf.coef_.toarray()) @pytest.mark.parametrize("csr_container", CSR_CONTAINERS) def test_sparse_decision_function(csr_container): # Test decision_function # Sanity check, test that decision_function implemented in python # returns the same as the one in libsvm # multi class: iris_data_sp = csr_container(iris.data) svc = svm.SVC(kernel="linear", C=0.1, decision_function_shape="ovo") clf = svc.fit(iris_data_sp, iris.target) dec = safe_sparse_dot(iris_data_sp, clf.coef_.T) + clf.intercept_ assert_allclose(dec, clf.decision_function(iris_data_sp)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_allclose(dec.ravel(), clf.decision_function(X)) assert_allclose( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(int).ravel()] ) expected = np.array([-1.0, -0.66, -1.0, 0.66, 1.0, 1.0]) assert_array_almost_equal(clf.decision_function(X), expected, decimal=2) @pytest.mark.parametrize("lil_container", LIL_CONTAINERS) def test_error(lil_container): # Test that it gives proper exception on deficient input clf = svm.SVC() X_sp = lil_container(X) Y2 = Y[:-1] # wrong dimensions for labels with pytest.raises(ValueError): clf.fit(X_sp, Y2) clf.fit(X_sp, Y) assert_array_equal(clf.predict(T), true_result) @pytest.mark.parametrize( "lil_container, dok_container", zip(LIL_CONTAINERS, DOK_CONTAINERS) ) def test_linearsvc(lil_container, dok_container): # Similar to test_SVC X_sp = lil_container(X) X2_sp = dok_container(X2) clf = svm.LinearSVC(dual="auto", random_state=0).fit(X, Y) sp_clf = svm.LinearSVC(dual="auto", random_state=0).fit(X_sp, Y) assert sp_clf.fit_intercept assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) assert_allclose(clf.predict(X), sp_clf.predict(X_sp)) clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) @pytest.mark.parametrize("csr_container", CSR_CONTAINERS) def test_linearsvc_iris(csr_container): # Test the sparse LinearSVC with the iris dataset iris_data_sp = csr_container(iris.data) sp_clf = svm.LinearSVC(dual="auto", random_state=0).fit(iris_data_sp, iris.target) clf = svm.LinearSVC(dual="auto", random_state=0).fit(iris.data, iris.target) assert clf.fit_intercept == sp_clf.fit_intercept assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=1) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=1) assert_allclose(clf.predict(iris.data), sp_clf.predict(iris_data_sp)) # check decision_function pred = np.argmax(sp_clf.decision_function(iris_data_sp), axis=1) assert_allclose(pred, clf.predict(iris.data)) # sparsify the coefficients on both models and check that they still # produce the same results clf.sparsify() assert_array_equal(pred, clf.predict(iris_data_sp)) sp_clf.sparsify() assert_array_equal(pred, sp_clf.predict(iris_data_sp)) @pytest.mark.parametrize("csr_container", CSR_CONTAINERS) def test_weight(csr_container): # Test class weights X_, y_ = make_classification( n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0 ) X_ = csr_container(X_) for clf in ( linear_model.LogisticRegression(), svm.LinearSVC(dual="auto", random_state=0), svm.SVC(), ): clf.set_params(class_weight={0: 5}) clf.fit(X_[:180], y_[:180]) y_pred = clf.predict(X_[180:]) assert np.sum(y_pred == y_[180:]) >= 11 @pytest.mark.parametrize("lil_container", LIL_CONTAINERS) def test_sample_weights(lil_container): # Test weights on individual samples X_sp = lil_container(X) clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict([X[2]]), [1.0]) sample_weight = [0.1] * 3 + [10] * 3 clf.fit(X_sp, Y, sample_weight=sample_weight) assert_array_equal(clf.predict([X[2]]), [2.0]) def test_sparse_liblinear_intercept_handling(): # Test that sparse liblinear honours intercept_scaling param test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC) @pytest.mark.parametrize( "X_train, y_train, X_test", [ [X, None, T], [X2, None, T2], [X_blobs[:80], None, X_blobs[80:]], [iris.data, None, iris.data], ], ) @pytest.mark.parametrize("kernel", ["linear", "poly", "rbf", "sigmoid"]) @pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + LIL_CONTAINERS) @skip_if_32bit def test_sparse_oneclasssvm(X_train, y_train, X_test, kernel, sparse_container): # Check that sparse OneClassSVM gives the same result as dense OneClassSVM X_train = sparse_container(X_train) clf = svm.OneClassSVM(gamma=1, kernel=kernel) check_svm_model_equal(clf, X_train, y_train, X_test) @pytest.mark.parametrize("csr_container", CSR_CONTAINERS) def test_sparse_realdata(csr_container): # Test on a subset from the 20newsgroups dataset. # This catches some bugs if input is not correctly converted into # sparse format or weights are not correctly initialized. data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069]) # SVC does not support large sparse, so we specify int32 indices # In this case, `csr_matrix` automatically uses int32 regardless of the dtypes of # `indices` and `indptr` but `csr_array` may or may not use the same dtype as # `indices` and `indptr`, which would be int64 if not specified indices = np.array([6, 5, 35, 31], dtype=np.int32) indptr = np.array([0] * 8 + [1] * 32 + [2] * 38 + [4] * 3, dtype=np.int32) X = csr_container((data, indices, indptr)) y = np.array( [ 1.0, 0.0, 2.0, 2.0, 1.0, 1.0, 1.0, 2.0, 2.0, 0.0, 1.0, 2.0, 2.0, 0.0, 2.0, 0.0, 3.0, 0.0, 3.0, 0.0, 1.0, 1.0, 3.0, 2.0, 3.0, 2.0, 0.0, 3.0, 1.0, 0.0, 2.0, 1.0, 2.0, 0.0, 1.0, 0.0, 2.0, 3.0, 1.0, 3.0, 0.0, 1.0, 0.0, 0.0, 2.0, 0.0, 1.0, 2.0, 2.0, 2.0, 3.0, 2.0, 0.0, 3.0, 2.0, 1.0, 2.0, 3.0, 2.0, 2.0, 0.0, 1.0, 0.0, 1.0, 2.0, 3.0, 0.0, 0.0, 2.0, 2.0, 1.0, 3.0, 1.0, 1.0, 0.0, 1.0, 2.0, 1.0, 1.0, 3.0, ] ) clf = svm.SVC(kernel="linear").fit(X.toarray(), y) sp_clf = svm.SVC(kernel="linear").fit(X.tocoo(), y) assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) @pytest.mark.parametrize("lil_container", LIL_CONTAINERS) def test_sparse_svc_clone_with_callable_kernel(lil_container): # Test that the "dense_fit" is called even though we use sparse input # meaning that everything works fine. a = svm.SVC(C=1, kernel=lambda x, y: x @ y.T, probability=True, random_state=0) b = base.clone(a) X_sp = lil_container(X) b.fit(X_sp, Y) pred = b.predict(X_sp) b.predict_proba(X_sp) dense_svm = svm.SVC( C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0 ) pred_dense = dense_svm.fit(X, Y).predict(X) assert_array_equal(pred_dense, pred) # b.decision_function(X_sp) # XXX : should be supported @pytest.mark.parametrize("lil_container", LIL_CONTAINERS) def test_timeout(lil_container): sp = svm.SVC( C=1, kernel=lambda x, y: x @ y.T, probability=True, random_state=0, max_iter=1 ) warning_msg = ( r"Solver terminated early \(max_iter=1\). Consider pre-processing " r"your data with StandardScaler or MinMaxScaler." ) with pytest.warns(ConvergenceWarning, match=warning_msg): sp.fit(lil_container(X), Y) def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) with ignore_warnings(category=ConvergenceWarning): proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) with ignore_warnings(category=ConvergenceWarning): proba_2 = a.fit(X, Y).predict_proba(X) assert_allclose(proba_1, proba_2)