import numpy as np import pytest import scipy.sparse as sp from sklearn.base import clone from sklearn.dummy import DummyClassifier, DummyRegressor from sklearn.exceptions import NotFittedError from sklearn.utils._testing import ( assert_almost_equal, assert_array_almost_equal, assert_array_equal, ignore_warnings, ) from sklearn.utils.fixes import CSC_CONTAINERS from sklearn.utils.stats import _weighted_percentile @ignore_warnings def _check_predict_proba(clf, X, y): proba = clf.predict_proba(X) # We know that we can have division by zero log_proba = clf.predict_log_proba(X) y = np.atleast_1d(y) if y.ndim == 1: y = np.reshape(y, (-1, 1)) n_outputs = y.shape[1] n_samples = len(X) if n_outputs == 1: proba = [proba] log_proba = [log_proba] for k in range(n_outputs): assert proba[k].shape[0] == n_samples assert proba[k].shape[1] == len(np.unique(y[:, k])) assert_array_almost_equal(proba[k].sum(axis=1), np.ones(len(X))) # We know that we can have division by zero assert_array_almost_equal(np.log(proba[k]), log_proba[k]) def _check_behavior_2d(clf): # 1d case X = np.array([[0], [0], [0], [0]]) # ignored y = np.array([1, 2, 1, 1]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert y.shape == y_pred.shape # 2d case y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert y.shape == y_pred.shape def _check_behavior_2d_for_constant(clf): # 2d case only X = np.array([[0], [0], [0], [0]]) # ignored y = np.array([[1, 0, 5, 4, 3], [2, 0, 1, 2, 5], [1, 0, 4, 5, 2], [1, 3, 3, 2, 0]]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert y.shape == y_pred.shape def _check_equality_regressor(statistic, y_learn, y_pred_learn, y_test, y_pred_test): assert_array_almost_equal(np.tile(statistic, (y_learn.shape[0], 1)), y_pred_learn) assert_array_almost_equal(np.tile(statistic, (y_test.shape[0], 1)), y_pred_test) def test_most_frequent_and_prior_strategy(): X = [[0], [0], [0], [0]] # ignored y = [1, 2, 1, 1] for strategy in ("most_frequent", "prior"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), np.ones(len(X))) _check_predict_proba(clf, X, y) if strategy == "prior": assert_array_almost_equal( clf.predict_proba([X[0]]), clf.class_prior_.reshape((1, -1)) ) else: assert_array_almost_equal( clf.predict_proba([X[0]]), clf.class_prior_.reshape((1, -1)) > 0.5 ) def test_most_frequent_and_prior_strategy_with_2d_column_y(): # non-regression test added in # https://github.com/scikit-learn/scikit-learn/pull/13545 X = [[0], [0], [0], [0]] y_1d = [1, 2, 1, 1] y_2d = [[1], [2], [1], [1]] for strategy in ("most_frequent", "prior"): clf_1d = DummyClassifier(strategy=strategy, random_state=0) clf_2d = DummyClassifier(strategy=strategy, random_state=0) clf_1d.fit(X, y_1d) clf_2d.fit(X, y_2d) assert_array_equal(clf_1d.predict(X), clf_2d.predict(X)) def test_most_frequent_and_prior_strategy_multioutput(): X = [[0], [0], [0], [0]] # ignored y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) n_samples = len(X) for strategy in ("prior", "most_frequent"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) assert_array_equal( clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))]), ) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_stratified_strategy(global_random_seed): X = [[0]] * 5 # ignored y = [1, 2, 1, 1, 2] clf = DummyClassifier(strategy="stratified", random_state=global_random_seed) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 3.0 / 5, decimal=1) assert_almost_equal(p[2], 2.0 / 5, decimal=1) _check_predict_proba(clf, X, y) def test_stratified_strategy_multioutput(global_random_seed): X = [[0]] * 5 # ignored y = np.array([[2, 1], [2, 2], [1, 1], [1, 2], [1, 1]]) clf = DummyClassifier(strategy="stratified", random_state=global_random_seed) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 3.0 / 5, decimal=1) assert_almost_equal(p[2], 2.0 / 5, decimal=1) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_uniform_strategy(global_random_seed): X = [[0]] * 4 # ignored y = [1, 2, 1, 1] clf = DummyClassifier(strategy="uniform", random_state=global_random_seed) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 0.5, decimal=1) assert_almost_equal(p[2], 0.5, decimal=1) _check_predict_proba(clf, X, y) def test_uniform_strategy_multioutput(global_random_seed): X = [[0]] * 4 # ignored y = np.array([[2, 1], [2, 2], [1, 2], [1, 1]]) clf = DummyClassifier(strategy="uniform", random_state=global_random_seed) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 0.5, decimal=1) assert_almost_equal(p[2], 0.5, decimal=1) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_string_labels(): X = [[0]] * 5 y = ["paris", "paris", "tokyo", "amsterdam", "berlin"] clf = DummyClassifier(strategy="most_frequent") clf.fit(X, y) assert_array_equal(clf.predict(X), ["paris"] * 5) @pytest.mark.parametrize( "y,y_test", [ ([2, 1, 1, 1], [2, 2, 1, 1]), ( np.array([[2, 2], [1, 1], [1, 1], [1, 1]]), np.array([[2, 2], [2, 2], [1, 1], [1, 1]]), ), ], ) def test_classifier_score_with_None(y, y_test): clf = DummyClassifier(strategy="most_frequent") clf.fit(None, y) assert clf.score(None, y_test) == 0.5 @pytest.mark.parametrize( "strategy", ["stratified", "most_frequent", "prior", "uniform", "constant"] ) def test_classifier_prediction_independent_of_X(strategy, global_random_seed): y = [0, 2, 1, 1] X1 = [[0]] * 4 clf1 = DummyClassifier( strategy=strategy, random_state=global_random_seed, constant=0 ) clf1.fit(X1, y) predictions1 = clf1.predict(X1) X2 = [[1]] * 4 clf2 = DummyClassifier( strategy=strategy, random_state=global_random_seed, constant=0 ) clf2.fit(X2, y) predictions2 = clf2.predict(X2) assert_array_equal(predictions1, predictions2) def test_mean_strategy_regressor(global_random_seed): random_state = np.random.RandomState(seed=global_random_seed) X = [[0]] * 4 # ignored y = random_state.randn(4) reg = DummyRegressor() reg.fit(X, y) assert_array_equal(reg.predict(X), [np.mean(y)] * len(X)) def test_mean_strategy_multioutput_regressor(global_random_seed): random_state = np.random.RandomState(seed=global_random_seed) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) mean = np.mean(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor() est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor(mean, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_regressor_exceptions(): reg = DummyRegressor() with pytest.raises(NotFittedError): reg.predict([]) def test_median_strategy_regressor(global_random_seed): random_state = np.random.RandomState(seed=global_random_seed) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="median") reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) def test_median_strategy_multioutput_regressor(global_random_seed): random_state = np.random.RandomState(seed=global_random_seed) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) median = np.median(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="median") est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor(median, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_quantile_strategy_regressor(global_random_seed): random_state = np.random.RandomState(seed=global_random_seed) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="quantile", quantile=0.5) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.min(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=1) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.max(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0.3) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.percentile(y, q=30)] * len(X)) def test_quantile_strategy_multioutput_regressor(global_random_seed): random_state = np.random.RandomState(seed=global_random_seed) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) median = np.median(y_learn, axis=0).reshape((1, -1)) quantile_values = np.percentile(y_learn, axis=0, q=80).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="quantile", quantile=0.5) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor(median, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) # Correctness oracle est = DummyRegressor(strategy="quantile", quantile=0.8) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( quantile_values, y_learn, y_pred_learn, y_test, y_pred_test ) _check_behavior_2d(est) def test_quantile_invalid(): X = [[0]] * 5 # ignored y = [0] * 5 # ignored est = DummyRegressor(strategy="quantile", quantile=None) err_msg = ( "When using `strategy='quantile', you have to specify the desired quantile" ) with pytest.raises(ValueError, match=err_msg): est.fit(X, y) def test_quantile_strategy_empty_train(): est = DummyRegressor(strategy="quantile", quantile=0.4) with pytest.raises(ValueError): est.fit([], []) def test_constant_strategy_regressor(global_random_seed): random_state = np.random.RandomState(seed=global_random_seed) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="constant", constant=[43]) reg.fit(X, y) assert_array_equal(reg.predict(X), [43] * len(X)) reg = DummyRegressor(strategy="constant", constant=43) reg.fit(X, y) assert_array_equal(reg.predict(X), [43] * len(X)) # non-regression test for #22478 assert not isinstance(reg.constant, np.ndarray) def test_constant_strategy_multioutput_regressor(global_random_seed): random_state = np.random.RandomState(seed=global_random_seed) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) # test with 2d array constants = random_state.randn(5) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="constant", constant=constants) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor(constants, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d_for_constant(est) def test_y_mean_attribute_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] # when strategy = 'mean' est = DummyRegressor(strategy="mean") est.fit(X, y) assert est.constant_ == np.mean(y) def test_constants_not_specified_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] est = DummyRegressor(strategy="constant") err_msg = "Constant target value has to be specified" with pytest.raises(TypeError, match=err_msg): est.fit(X, y) def test_constant_size_multioutput_regressor(global_random_seed): random_state = np.random.RandomState(seed=global_random_seed) X = random_state.randn(10, 10) y = random_state.randn(10, 5) est = DummyRegressor(strategy="constant", constant=[1, 2, 3, 4]) err_msg = r"Constant target value should have shape \(5, 1\)." with pytest.raises(ValueError, match=err_msg): est.fit(X, y) def test_constant_strategy(): X = [[0], [0], [0], [0]] # ignored y = [2, 1, 2, 2] clf = DummyClassifier(strategy="constant", random_state=0, constant=1) clf.fit(X, y) assert_array_equal(clf.predict(X), np.ones(len(X))) _check_predict_proba(clf, X, y) X = [[0], [0], [0], [0]] # ignored y = ["two", "one", "two", "two"] clf = DummyClassifier(strategy="constant", random_state=0, constant="one") clf.fit(X, y) assert_array_equal(clf.predict(X), np.array(["one"] * 4)) _check_predict_proba(clf, X, y) def test_constant_strategy_multioutput(): X = [[0], [0], [0], [0]] # ignored y = np.array([[2, 3], [1, 3], [2, 3], [2, 0]]) n_samples = len(X) clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) clf.fit(X, y) assert_array_equal( clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))]) ) _check_predict_proba(clf, X, y) @pytest.mark.parametrize( "y, params, err_msg", [ ([2, 1, 2, 2], {"random_state": 0}, "Constant.*has to be specified"), ([2, 1, 2, 2], {"constant": [2, 0]}, "Constant.*should have shape"), ( np.transpose([[2, 1, 2, 2], [2, 1, 2, 2]]), {"constant": 2}, "Constant.*should have shape", ), ( [2, 1, 2, 2], {"constant": "my-constant"}, "constant=my-constant.*Possible values.*\\[1, 2]", ), ( np.transpose([[2, 1, 2, 2], [2, 1, 2, 2]]), {"constant": [2, "unknown"]}, "constant=\\[2, 'unknown'].*Possible values.*\\[1, 2]", ), ], ids=[ "no-constant", "too-many-constant", "not-enough-output", "single-output", "multi-output", ], ) def test_constant_strategy_exceptions(y, params, err_msg): X = [[0], [0], [0], [0]] clf = DummyClassifier(strategy="constant", **params) with pytest.raises(ValueError, match=err_msg): clf.fit(X, y) def test_classification_sample_weight(): X = [[0], [0], [1]] y = [0, 1, 0] sample_weight = [0.1, 1.0, 0.1] clf = DummyClassifier(strategy="stratified").fit(X, y, sample_weight) assert_array_almost_equal(clf.class_prior_, [0.2 / 1.2, 1.0 / 1.2]) @pytest.mark.parametrize("csc_container", CSC_CONTAINERS) def test_constant_strategy_sparse_target(csc_container): X = [[0]] * 5 # ignored y = csc_container(np.array([[0, 1], [4, 0], [1, 1], [1, 4], [1, 1]])) n_samples = len(X) clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) clf.fit(X, y) y_pred = clf.predict(X) assert sp.issparse(y_pred) assert_array_equal( y_pred.toarray(), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))]) ) @pytest.mark.parametrize("csc_container", CSC_CONTAINERS) def test_uniform_strategy_sparse_target_warning(global_random_seed, csc_container): X = [[0]] * 5 # ignored y = csc_container(np.array([[2, 1], [2, 2], [1, 4], [4, 2], [1, 1]])) clf = DummyClassifier(strategy="uniform", random_state=global_random_seed) with pytest.warns(UserWarning, match="the uniform strategy would not save memory"): clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 1 / 3, decimal=1) assert_almost_equal(p[2], 1 / 3, decimal=1) assert_almost_equal(p[4], 1 / 3, decimal=1) @pytest.mark.parametrize("csc_container", CSC_CONTAINERS) def test_stratified_strategy_sparse_target(global_random_seed, csc_container): X = [[0]] * 5 # ignored y = csc_container(np.array([[4, 1], [0, 0], [1, 1], [1, 4], [1, 1]])) clf = DummyClassifier(strategy="stratified", random_state=global_random_seed) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) assert sp.issparse(y_pred) y_pred = y_pred.toarray() for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 3.0 / 5, decimal=1) assert_almost_equal(p[0], 1.0 / 5, decimal=1) assert_almost_equal(p[4], 1.0 / 5, decimal=1) @pytest.mark.parametrize("csc_container", CSC_CONTAINERS) def test_most_frequent_and_prior_strategy_sparse_target(csc_container): X = [[0]] * 5 # ignored y = csc_container(np.array([[1, 0], [1, 3], [4, 0], [0, 1], [1, 0]])) n_samples = len(X) y_expected = np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))]) for strategy in ("most_frequent", "prior"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) y_pred = clf.predict(X) assert sp.issparse(y_pred) assert_array_equal(y_pred.toarray(), y_expected) def test_dummy_regressor_sample_weight(global_random_seed, n_samples=10): random_state = np.random.RandomState(seed=global_random_seed) X = [[0]] * n_samples y = random_state.rand(n_samples) sample_weight = random_state.rand(n_samples) est = DummyRegressor(strategy="mean").fit(X, y, sample_weight) assert est.constant_ == np.average(y, weights=sample_weight) est = DummyRegressor(strategy="median").fit(X, y, sample_weight) assert est.constant_ == _weighted_percentile(y, sample_weight, 50.0) est = DummyRegressor(strategy="quantile", quantile=0.95).fit(X, y, sample_weight) assert est.constant_ == _weighted_percentile(y, sample_weight, 95.0) def test_dummy_regressor_on_3D_array(): X = np.array([[["foo"]], [["bar"]], [["baz"]]]) y = np.array([2, 2, 2]) y_expected = np.array([2, 2, 2]) cls = DummyRegressor() cls.fit(X, y) y_pred = cls.predict(X) assert_array_equal(y_pred, y_expected) def test_dummy_classifier_on_3D_array(): X = np.array([[["foo"]], [["bar"]], [["baz"]]]) y = [2, 2, 2] y_expected = [2, 2, 2] y_proba_expected = [[1], [1], [1]] cls = DummyClassifier(strategy="stratified") cls.fit(X, y) y_pred = cls.predict(X) y_pred_proba = cls.predict_proba(X) assert_array_equal(y_pred, y_expected) assert_array_equal(y_pred_proba, y_proba_expected) def test_dummy_regressor_return_std(): X = [[0]] * 3 # ignored y = np.array([2, 2, 2]) y_std_expected = np.array([0, 0, 0]) cls = DummyRegressor() cls.fit(X, y) y_pred_list = cls.predict(X, return_std=True) # there should be two elements when return_std is True assert len(y_pred_list) == 2 # the second element should be all zeros assert_array_equal(y_pred_list[1], y_std_expected) @pytest.mark.parametrize( "y,y_test", [ ([1, 1, 1, 2], [1.25] * 4), (np.array([[2, 2], [1, 1], [1, 1], [1, 1]]), [[1.25, 1.25]] * 4), ], ) def test_regressor_score_with_None(y, y_test): reg = DummyRegressor() reg.fit(None, y) assert reg.score(None, y_test) == 1.0 @pytest.mark.parametrize("strategy", ["mean", "median", "quantile", "constant"]) def test_regressor_prediction_independent_of_X(strategy): y = [0, 2, 1, 1] X1 = [[0]] * 4 reg1 = DummyRegressor(strategy=strategy, constant=0, quantile=0.7) reg1.fit(X1, y) predictions1 = reg1.predict(X1) X2 = [[1]] * 4 reg2 = DummyRegressor(strategy=strategy, constant=0, quantile=0.7) reg2.fit(X2, y) predictions2 = reg2.predict(X2) assert_array_equal(predictions1, predictions2) @pytest.mark.parametrize( "strategy", ["stratified", "most_frequent", "prior", "uniform", "constant"] ) def test_dtype_of_classifier_probas(strategy): y = [0, 2, 1, 1] X = np.zeros(4) model = DummyClassifier(strategy=strategy, random_state=0, constant=0) probas = model.fit(X, y).predict_proba(X) assert probas.dtype == np.float64