""" The :mod:`sklearn.utils.metaestimators` module includes utilities for meta-estimators. """ # Author: Joel Nothman # Andreas Mueller # License: BSD from abc import ABCMeta, abstractmethod from contextlib import suppress from typing import Any, List import numpy as np from ..base import BaseEstimator from ..utils import _safe_indexing from ..utils._tags import _safe_tags from ._available_if import available_if __all__ = ["available_if"] class _BaseComposition(BaseEstimator, metaclass=ABCMeta): """Handles parameter management for classifiers composed of named estimators.""" steps: List[Any] @abstractmethod def __init__(self): pass def _get_params(self, attr, deep=True): out = super().get_params(deep=deep) if not deep: return out estimators = getattr(self, attr) try: out.update(estimators) except (TypeError, ValueError): # Ignore TypeError for cases where estimators is not a list of # (name, estimator) and ignore ValueError when the list is not # formatted correctly. This is to prevent errors when calling # `set_params`. `BaseEstimator.set_params` calls `get_params` which # can error for invalid values for `estimators`. return out for name, estimator in estimators: if hasattr(estimator, "get_params"): for key, value in estimator.get_params(deep=True).items(): out["%s__%s" % (name, key)] = value return out def _set_params(self, attr, **params): # Ensure strict ordering of parameter setting: # 1. All steps if attr in params: setattr(self, attr, params.pop(attr)) # 2. Replace items with estimators in params items = getattr(self, attr) if isinstance(items, list) and items: # Get item names used to identify valid names in params # `zip` raises a TypeError when `items` does not contains # elements of length 2 with suppress(TypeError): item_names, _ = zip(*items) for name in list(params.keys()): if "__" not in name and name in item_names: self._replace_estimator(attr, name, params.pop(name)) # 3. Step parameters and other initialisation arguments super().set_params(**params) return self def _replace_estimator(self, attr, name, new_val): # assumes `name` is a valid estimator name new_estimators = list(getattr(self, attr)) for i, (estimator_name, _) in enumerate(new_estimators): if estimator_name == name: new_estimators[i] = (name, new_val) break setattr(self, attr, new_estimators) def _validate_names(self, names): if len(set(names)) != len(names): raise ValueError("Names provided are not unique: {0!r}".format(list(names))) invalid_names = set(names).intersection(self.get_params(deep=False)) if invalid_names: raise ValueError( "Estimator names conflict with constructor arguments: {0!r}".format( sorted(invalid_names) ) ) invalid_names = [name for name in names if "__" in name] if invalid_names: raise ValueError( "Estimator names must not contain __: got {0!r}".format(invalid_names) ) def _safe_split(estimator, X, y, indices, train_indices=None): """Create subset of dataset and properly handle kernels. Slice X, y according to indices for cross-validation, but take care of precomputed kernel-matrices or pairwise affinities / distances. If ``estimator._pairwise is True``, X needs to be square and we slice rows and columns. If ``train_indices`` is not None, we slice rows using ``indices`` (assumed the test set) and columns using ``train_indices``, indicating the training set. Labels y will always be indexed only along the first axis. Parameters ---------- estimator : object Estimator to determine whether we should slice only rows or rows and columns. X : array-like, sparse matrix or iterable Data to be indexed. If ``estimator._pairwise is True``, this needs to be a square array-like or sparse matrix. y : array-like, sparse matrix or iterable Targets to be indexed. indices : array of int Rows to select from X and y. If ``estimator._pairwise is True`` and ``train_indices is None`` then ``indices`` will also be used to slice columns. train_indices : array of int or None, default=None If ``estimator._pairwise is True`` and ``train_indices is not None``, then ``train_indices`` will be use to slice the columns of X. Returns ------- X_subset : array-like, sparse matrix or list Indexed data. y_subset : array-like, sparse matrix or list Indexed targets. """ if _safe_tags(estimator, key="pairwise"): if not hasattr(X, "shape"): raise ValueError( "Precomputed kernels or affinity matrices have " "to be passed as arrays or sparse matrices." ) # X is a precomputed square kernel matrix if X.shape[0] != X.shape[1]: raise ValueError("X should be a square kernel matrix") if train_indices is None: X_subset = X[np.ix_(indices, indices)] else: X_subset = X[np.ix_(indices, train_indices)] else: X_subset = _safe_indexing(X, indices) if y is not None: y_subset = _safe_indexing(y, indices) else: y_subset = None return X_subset, y_subset