""" Our own implementation of the Newton algorithm Unlike the scipy.optimize version, this version of the Newton conjugate gradient solver uses only one function call to retrieve the func value, the gradient value and a callable for the Hessian matvec product. If the function call is very expensive (e.g. for logistic regression with large design matrix), this approach gives very significant speedups. """ # This is a modified file from scipy.optimize # Original authors: Travis Oliphant, Eric Jones # Modifications by Gael Varoquaux, Mathieu Blondel and Tom Dupre la Tour # License: BSD import warnings import numpy as np import scipy from ..exceptions import ConvergenceWarning from .fixes import line_search_wolfe1, line_search_wolfe2 class _LineSearchError(RuntimeError): pass def _line_search_wolfe12(f, fprime, xk, pk, gfk, old_fval, old_old_fval, **kwargs): """ Same as line_search_wolfe1, but fall back to line_search_wolfe2 if suitable step length is not found, and raise an exception if a suitable step length is not found. Raises ------ _LineSearchError If no suitable step size is found. """ ret = line_search_wolfe1(f, fprime, xk, pk, gfk, old_fval, old_old_fval, **kwargs) if ret[0] is None: # Have a look at the line_search method of our NewtonSolver class. We borrow # the logic from there # Deal with relative loss differences around machine precision. args = kwargs.get("args", tuple()) fval = f(xk + pk, *args) eps = 16 * np.finfo(np.asarray(old_fval).dtype).eps tiny_loss = np.abs(old_fval * eps) loss_improvement = fval - old_fval check = np.abs(loss_improvement) <= tiny_loss if check: # 2.1 Check sum of absolute gradients as alternative condition. sum_abs_grad_old = scipy.linalg.norm(gfk, ord=1) grad = fprime(xk + pk, *args) sum_abs_grad = scipy.linalg.norm(grad, ord=1) check = sum_abs_grad < sum_abs_grad_old if check: ret = ( 1.0, # step size ret[1] + 1, # number of function evaluations ret[2] + 1, # number of gradient evaluations fval, old_fval, grad, ) if ret[0] is None: # line search failed: try different one. # TODO: It seems that the new check for the sum of absolute gradients above # catches all cases that, earlier, ended up here. In fact, our tests never # trigger this "if branch" here and we can consider to remove it. ret = line_search_wolfe2( f, fprime, xk, pk, gfk, old_fval, old_old_fval, **kwargs ) if ret[0] is None: raise _LineSearchError() return ret def _cg(fhess_p, fgrad, maxiter, tol): """ Solve iteratively the linear system 'fhess_p . xsupi = fgrad' with a conjugate gradient descent. Parameters ---------- fhess_p : callable Function that takes the gradient as a parameter and returns the matrix product of the Hessian and gradient. fgrad : ndarray of shape (n_features,) or (n_features + 1,) Gradient vector. maxiter : int Number of CG iterations. tol : float Stopping criterion. Returns ------- xsupi : ndarray of shape (n_features,) or (n_features + 1,) Estimated solution. """ xsupi = np.zeros(len(fgrad), dtype=fgrad.dtype) ri = np.copy(fgrad) psupi = -ri i = 0 dri0 = np.dot(ri, ri) # We also track of |p_i|^2. psupi_norm2 = dri0 while i <= maxiter: if np.sum(np.abs(ri)) <= tol: break Ap = fhess_p(psupi) # check curvature curv = np.dot(psupi, Ap) if 0 <= curv <= 16 * np.finfo(np.float64).eps * psupi_norm2: # See https://arxiv.org/abs/1803.02924, Algo 1 Capped Conjugate Gradient. break elif curv < 0: if i > 0: break else: # fall back to steepest descent direction xsupi += dri0 / curv * psupi break alphai = dri0 / curv xsupi += alphai * psupi ri += alphai * Ap dri1 = np.dot(ri, ri) betai = dri1 / dri0 psupi = -ri + betai * psupi # We use |p_i|^2 = |r_i|^2 + beta_i^2 |p_{i-1}|^2 psupi_norm2 = dri1 + betai**2 * psupi_norm2 i = i + 1 dri0 = dri1 # update np.dot(ri,ri) for next time. return xsupi def _newton_cg( grad_hess, func, grad, x0, args=(), tol=1e-4, maxiter=100, maxinner=200, line_search=True, warn=True, ): """ Minimization of scalar function of one or more variables using the Newton-CG algorithm. Parameters ---------- grad_hess : callable Should return the gradient and a callable returning the matvec product of the Hessian. func : callable Should return the value of the function. grad : callable Should return the function value and the gradient. This is used by the linesearch functions. x0 : array of float Initial guess. args : tuple, default=() Arguments passed to func_grad_hess, func and grad. tol : float, default=1e-4 Stopping criterion. The iteration will stop when ``max{|g_i | i = 1, ..., n} <= tol`` where ``g_i`` is the i-th component of the gradient. maxiter : int, default=100 Number of Newton iterations. maxinner : int, default=200 Number of CG iterations. line_search : bool, default=True Whether to use a line search or not. warn : bool, default=True Whether to warn when didn't converge. Returns ------- xk : ndarray of float Estimated minimum. """ x0 = np.asarray(x0).flatten() xk = np.copy(x0) k = 0 if line_search: old_fval = func(x0, *args) old_old_fval = None # Outer loop: our Newton iteration while k < maxiter: # Compute a search direction pk by applying the CG method to # del2 f(xk) p = - fgrad f(xk) starting from 0. fgrad, fhess_p = grad_hess(xk, *args) absgrad = np.abs(fgrad) if np.max(absgrad) <= tol: break maggrad = np.sum(absgrad) eta = min([0.5, np.sqrt(maggrad)]) termcond = eta * maggrad # Inner loop: solve the Newton update by conjugate gradient, to # avoid inverting the Hessian xsupi = _cg(fhess_p, fgrad, maxiter=maxinner, tol=termcond) alphak = 1.0 if line_search: try: alphak, fc, gc, old_fval, old_old_fval, gfkp1 = _line_search_wolfe12( func, grad, xk, xsupi, fgrad, old_fval, old_old_fval, args=args ) except _LineSearchError: warnings.warn("Line Search failed") break xk += alphak * xsupi # upcast if necessary k += 1 if warn and k >= maxiter: warnings.warn( "newton-cg failed to converge. Increase the number of iterations.", ConvergenceWarning, ) return xk, k def _check_optimize_result(solver, result, max_iter=None, extra_warning_msg=None): """Check the OptimizeResult for successful convergence Parameters ---------- solver : str Solver name. Currently only `lbfgs` is supported. result : OptimizeResult Result of the scipy.optimize.minimize function. max_iter : int, default=None Expected maximum number of iterations. extra_warning_msg : str, default=None Extra warning message. Returns ------- n_iter : int Number of iterations. """ # handle both scipy and scikit-learn solver names if solver == "lbfgs": if result.status != 0: try: # The message is already decoded in scipy>=1.6.0 result_message = result.message.decode("latin1") except AttributeError: result_message = result.message warning_msg = ( "{} failed to converge (status={}):\n{}.\n\n" "Increase the number of iterations (max_iter) " "or scale the data as shown in:\n" " https://scikit-learn.org/stable/modules/" "preprocessing.html" ).format(solver, result.status, result_message) if extra_warning_msg is not None: warning_msg += "\n" + extra_warning_msg warnings.warn(warning_msg, ConvergenceWarning, stacklevel=2) if max_iter is not None: # In scipy <= 1.0.0, nit may exceed maxiter for lbfgs. # See https://github.com/scipy/scipy/issues/7854 n_iter_i = min(result.nit, max_iter) else: n_iter_i = result.nit else: raise NotImplementedError return n_iter_i