""" Test fast_dict. """ import numpy as np from numpy.testing import assert_allclose, assert_array_equal from sklearn.utils._fast_dict import IntFloatDict, argmin def test_int_float_dict(): rng = np.random.RandomState(0) keys = np.unique(rng.randint(100, size=10).astype(np.intp)) values = rng.rand(len(keys)) d = IntFloatDict(keys, values) for key, value in zip(keys, values): assert d[key] == value assert len(d) == len(keys) d.append(120, 3.0) assert d[120] == 3.0 assert len(d) == len(keys) + 1 for i in range(2000): d.append(i + 1000, 4.0) assert d[1100] == 4.0 def test_int_float_dict_argmin(): # Test the argmin implementation on the IntFloatDict keys = np.arange(100, dtype=np.intp) values = np.arange(100, dtype=np.float64) d = IntFloatDict(keys, values) assert argmin(d) == (0, 0) def test_to_arrays(): # Test that an IntFloatDict is converted into arrays # of keys and values correctly keys_in = np.array([1, 2, 3], dtype=np.intp) values_in = np.array([4, 5, 6], dtype=np.float64) d = IntFloatDict(keys_in, values_in) keys_out, values_out = d.to_arrays() assert keys_out.dtype == keys_in.dtype assert values_in.dtype == values_out.dtype assert_array_equal(keys_out, keys_in) assert_allclose(values_out, values_in)