import copy import itertools import unittest.mock from io import BytesIO import numpy as np from PIL import Image import pytest import base64 from numpy.testing import assert_array_equal, assert_array_almost_equal from matplotlib import cycler import matplotlib import matplotlib.colors as mcolors import matplotlib.cm as cm import matplotlib.colorbar as mcolorbar import matplotlib.cbook as cbook import matplotlib.pyplot as plt import matplotlib.scale as mscale from matplotlib.testing.decorators import image_comparison, check_figures_equal @pytest.mark.parametrize('N, result', [ (5, [1, .6, .2, .1, 0]), (2, [1, 0]), (1, [0]), ]) def test_create_lookup_table(N, result): data = [(0.0, 1.0, 1.0), (0.5, 0.2, 0.2), (1.0, 0.0, 0.0)] assert_array_almost_equal(mcolors._create_lookup_table(N, data), result) def test_resample(): """ GitHub issue #6025 pointed to incorrect ListedColormap._resample; here we test the method for LinearSegmentedColormap as well. """ n = 101 colorlist = np.empty((n, 4), float) colorlist[:, 0] = np.linspace(0, 1, n) colorlist[:, 1] = 0.2 colorlist[:, 2] = np.linspace(1, 0, n) colorlist[:, 3] = 0.7 lsc = mcolors.LinearSegmentedColormap.from_list('lsc', colorlist) lc = mcolors.ListedColormap(colorlist) # Set some bad values for testing too for cmap in [lsc, lc]: cmap.set_under('r') cmap.set_over('g') cmap.set_bad('b') lsc3 = lsc._resample(3) lc3 = lc._resample(3) expected = np.array([[0.0, 0.2, 1.0, 0.7], [0.5, 0.2, 0.5, 0.7], [1.0, 0.2, 0.0, 0.7]], float) assert_array_almost_equal(lsc3([0, 0.5, 1]), expected) assert_array_almost_equal(lc3([0, 0.5, 1]), expected) # Test over/under was copied properly assert_array_almost_equal(lsc(np.inf), lsc3(np.inf)) assert_array_almost_equal(lsc(-np.inf), lsc3(-np.inf)) assert_array_almost_equal(lsc(np.nan), lsc3(np.nan)) assert_array_almost_equal(lc(np.inf), lc3(np.inf)) assert_array_almost_equal(lc(-np.inf), lc3(-np.inf)) assert_array_almost_equal(lc(np.nan), lc3(np.nan)) def test_register_cmap(): new_cm = copy.copy(cm.get_cmap("viridis")) target = "viridis2" cm.register_cmap(target, new_cm) assert plt.get_cmap(target) == new_cm with pytest.raises(ValueError, match="Arguments must include a name or a Colormap"): cm.register_cmap() with pytest.warns(UserWarning): cm.register_cmap(target, new_cm) cm.unregister_cmap(target) with pytest.raises(ValueError, match=f'{target!r} is not a valid value for name;'): cm.get_cmap(target) # test that second time is error free cm.unregister_cmap(target) with pytest.raises(ValueError, match="You must pass a Colormap instance."): cm.register_cmap('nome', cmap='not a cmap') def test_double_register_builtin_cmap(): name = "viridis" match = f"Trying to re-register the builtin cmap {name!r}." with pytest.raises(ValueError, match=match): cm.register_cmap(name, cm.get_cmap(name)) with pytest.warns(UserWarning): cm.register_cmap(name, cm.get_cmap(name), override_builtin=True) def test_unregister_builtin_cmap(): name = "viridis" match = f'cannot unregister {name!r} which is a builtin colormap.' with pytest.raises(ValueError, match=match): cm.unregister_cmap(name) def test_colormap_global_set_warn(): new_cm = plt.get_cmap('viridis') # Store the old value so we don't override the state later on. orig_cmap = copy.copy(new_cm) with pytest.warns(cbook.MatplotlibDeprecationWarning, match="You are modifying the state of a globally"): # This should warn now because we've modified the global state new_cm.set_under('k') # This shouldn't warn because it is a copy copy.copy(new_cm).set_under('b') # Test that registering and then modifying warns plt.register_cmap(name='test_cm', cmap=copy.copy(orig_cmap)) new_cm = plt.get_cmap('test_cm') with pytest.warns(cbook.MatplotlibDeprecationWarning, match="You are modifying the state of a globally"): # This should warn now because we've modified the global state new_cm.set_under('k') # Re-register the original with pytest.warns(UserWarning): plt.register_cmap(cmap=orig_cmap, override_builtin=True) def test_colormap_dict_deprecate(): # Make sure we warn on get and set access into cmap_d with pytest.warns(cbook.MatplotlibDeprecationWarning, match="The global colormaps dictionary is no longer"): cmap = plt.cm.cmap_d['viridis'] with pytest.warns(cbook.MatplotlibDeprecationWarning, match="The global colormaps dictionary is no longer"): plt.cm.cmap_d['test'] = cmap def test_colormap_copy(): cmap = plt.cm.Reds copied_cmap = copy.copy(cmap) with np.errstate(invalid='ignore'): ret1 = copied_cmap([-1, 0, .5, 1, np.nan, np.inf]) cmap2 = copy.copy(copied_cmap) cmap2.set_bad('g') with np.errstate(invalid='ignore'): ret2 = copied_cmap([-1, 0, .5, 1, np.nan, np.inf]) assert_array_equal(ret1, ret2) # again with the .copy method: cmap = plt.cm.Reds copied_cmap = cmap.copy() with np.errstate(invalid='ignore'): ret1 = copied_cmap([-1, 0, .5, 1, np.nan, np.inf]) cmap2 = copy.copy(copied_cmap) cmap2.set_bad('g') with np.errstate(invalid='ignore'): ret2 = copied_cmap([-1, 0, .5, 1, np.nan, np.inf]) assert_array_equal(ret1, ret2) def test_colormap_equals(): cmap = plt.get_cmap("plasma") cm_copy = cmap.copy() # different object id's assert cm_copy is not cmap # But the same data should be equal assert cm_copy == cmap # Change the copy cm_copy.set_bad('y') assert cm_copy != cmap # Make sure we can compare different sizes without failure cm_copy._lut = cm_copy._lut[:10, :] assert cm_copy != cmap # Test different names are not equal cm_copy = cmap.copy() cm_copy.name = "Test" assert cm_copy != cmap # Test colorbar extends cm_copy = cmap.copy() cm_copy.colorbar_extend = not cmap.colorbar_extend assert cm_copy != cmap def test_colormap_endian(): """ GitHub issue #1005: a bug in putmask caused erroneous mapping of 1.0 when input from a non-native-byteorder array. """ cmap = cm.get_cmap("jet") # Test under, over, and invalid along with values 0 and 1. a = [-0.5, 0, 0.5, 1, 1.5, np.nan] for dt in ["f2", "f4", "f8"]: anative = np.ma.masked_invalid(np.array(a, dtype=dt)) aforeign = anative.byteswap().newbyteorder() assert_array_equal(cmap(anative), cmap(aforeign)) def test_colormap_invalid(): """ GitHub issue #9892: Handling of nan's were getting mapped to under rather than bad. This tests to make sure all invalid values (-inf, nan, inf) are mapped respectively to (under, bad, over). """ cmap = cm.get_cmap("plasma") x = np.array([-np.inf, -1, 0, np.nan, .7, 2, np.inf]) expected = np.array([[0.050383, 0.029803, 0.527975, 1.], [0.050383, 0.029803, 0.527975, 1.], [0.050383, 0.029803, 0.527975, 1.], [0., 0., 0., 0.], [0.949217, 0.517763, 0.295662, 1.], [0.940015, 0.975158, 0.131326, 1.], [0.940015, 0.975158, 0.131326, 1.]]) assert_array_equal(cmap(x), expected) # Test masked representation (-inf, inf) are now masked expected = np.array([[0., 0., 0., 0.], [0.050383, 0.029803, 0.527975, 1.], [0.050383, 0.029803, 0.527975, 1.], [0., 0., 0., 0.], [0.949217, 0.517763, 0.295662, 1.], [0.940015, 0.975158, 0.131326, 1.], [0., 0., 0., 0.]]) assert_array_equal(cmap(np.ma.masked_invalid(x)), expected) # Test scalar representations assert_array_equal(cmap(-np.inf), cmap(0)) assert_array_equal(cmap(np.inf), cmap(1.0)) assert_array_equal(cmap(np.nan), np.array([0., 0., 0., 0.])) def test_colormap_return_types(): """ Make sure that tuples are returned for scalar input and that the proper shapes are returned for ndarrays. """ cmap = cm.get_cmap("plasma") # Test return types and shapes # scalar input needs to return a tuple of length 4 assert isinstance(cmap(0.5), tuple) assert len(cmap(0.5)) == 4 # input array returns an ndarray of shape x.shape + (4,) x = np.ones(4) assert cmap(x).shape == x.shape + (4,) # multi-dimensional array input x2d = np.zeros((2, 2)) assert cmap(x2d).shape == x2d.shape + (4,) def test_BoundaryNorm(): """ GitHub issue #1258: interpolation was failing with numpy 1.7 pre-release. """ boundaries = [0, 1.1, 2.2] vals = [-1, 0, 1, 2, 2.2, 4] # Without interpolation expected = [-1, 0, 0, 1, 2, 2] ncolors = len(boundaries) - 1 bn = mcolors.BoundaryNorm(boundaries, ncolors) assert_array_equal(bn(vals), expected) # ncolors != len(boundaries) - 1 triggers interpolation expected = [-1, 0, 0, 2, 3, 3] ncolors = len(boundaries) bn = mcolors.BoundaryNorm(boundaries, ncolors) assert_array_equal(bn(vals), expected) # with a single region and interpolation expected = [-1, 1, 1, 1, 3, 3] bn = mcolors.BoundaryNorm([0, 2.2], ncolors) assert_array_equal(bn(vals), expected) # more boundaries for a third color boundaries = [0, 1, 2, 3] vals = [-1, 0.1, 1.1, 2.2, 4] ncolors = 5 expected = [-1, 0, 2, 4, 5] bn = mcolors.BoundaryNorm(boundaries, ncolors) assert_array_equal(bn(vals), expected) # a scalar as input should not trigger an error and should return a scalar boundaries = [0, 1, 2] vals = [-1, 0.1, 1.1, 2.2] bn = mcolors.BoundaryNorm(boundaries, 2) expected = [-1, 0, 1, 2] for v, ex in zip(vals, expected): ret = bn(v) assert isinstance(ret, int) assert_array_equal(ret, ex) assert_array_equal(bn([v]), ex) # same with interp bn = mcolors.BoundaryNorm(boundaries, 3) expected = [-1, 0, 2, 3] for v, ex in zip(vals, expected): ret = bn(v) assert isinstance(ret, int) assert_array_equal(ret, ex) assert_array_equal(bn([v]), ex) # Clipping bn = mcolors.BoundaryNorm(boundaries, 3, clip=True) expected = [0, 0, 2, 2] for v, ex in zip(vals, expected): ret = bn(v) assert isinstance(ret, int) assert_array_equal(ret, ex) assert_array_equal(bn([v]), ex) # Masked arrays boundaries = [0, 1.1, 2.2] vals = np.ma.masked_invalid([-1., np.NaN, 0, 1.4, 9]) # Without interpolation ncolors = len(boundaries) - 1 bn = mcolors.BoundaryNorm(boundaries, ncolors) expected = np.ma.masked_array([-1, -99, 0, 1, 2], mask=[0, 1, 0, 0, 0]) assert_array_equal(bn(vals), expected) # With interpolation bn = mcolors.BoundaryNorm(boundaries, len(boundaries)) expected = np.ma.masked_array([-1, -99, 0, 2, 3], mask=[0, 1, 0, 0, 0]) assert_array_equal(bn(vals), expected) # Non-trivial masked arrays vals = np.ma.masked_invalid([np.Inf, np.NaN]) assert np.all(bn(vals).mask) vals = np.ma.masked_invalid([np.Inf]) assert np.all(bn(vals).mask) # Incompatible extend and clip with pytest.raises(ValueError, match="not compatible"): mcolors.BoundaryNorm(np.arange(4), 5, extend='both', clip=True) # Too small ncolors argument with pytest.raises(ValueError, match="ncolors must equal or exceed"): mcolors.BoundaryNorm(np.arange(4), 2) with pytest.raises(ValueError, match="ncolors must equal or exceed"): mcolors.BoundaryNorm(np.arange(4), 3, extend='min') with pytest.raises(ValueError, match="ncolors must equal or exceed"): mcolors.BoundaryNorm(np.arange(4), 4, extend='both') # Testing extend keyword, with interpolation (large cmap) bounds = [1, 2, 3] cmap = cm.get_cmap('viridis') mynorm = mcolors.BoundaryNorm(bounds, cmap.N, extend='both') refnorm = mcolors.BoundaryNorm([0] + bounds + [4], cmap.N) x = np.random.randn(100) * 10 + 2 ref = refnorm(x) ref[ref == 0] = -1 ref[ref == cmap.N - 1] = cmap.N assert_array_equal(mynorm(x), ref) # Without interpolation cmref = mcolors.ListedColormap(['blue', 'red']) cmref.set_over('black') cmref.set_under('white') cmshould = mcolors.ListedColormap(['white', 'blue', 'red', 'black']) assert mcolors.same_color(cmref.get_over(), 'black') assert mcolors.same_color(cmref.get_under(), 'white') refnorm = mcolors.BoundaryNorm(bounds, cmref.N) mynorm = mcolors.BoundaryNorm(bounds, cmshould.N, extend='both') assert mynorm.vmin == refnorm.vmin assert mynorm.vmax == refnorm.vmax assert mynorm(bounds[0] - 0.1) == -1 # under assert mynorm(bounds[0] + 0.1) == 1 # first bin -> second color assert mynorm(bounds[-1] - 0.1) == cmshould.N - 2 # next-to-last color assert mynorm(bounds[-1] + 0.1) == cmshould.N # over x = [-1, 1.2, 2.3, 9.6] assert_array_equal(cmshould(mynorm(x)), cmshould([0, 1, 2, 3])) x = np.random.randn(100) * 10 + 2 assert_array_equal(cmshould(mynorm(x)), cmref(refnorm(x))) # Just min cmref = mcolors.ListedColormap(['blue', 'red']) cmref.set_under('white') cmshould = mcolors.ListedColormap(['white', 'blue', 'red']) assert mcolors.same_color(cmref.get_under(), 'white') assert cmref.N == 2 assert cmshould.N == 3 refnorm = mcolors.BoundaryNorm(bounds, cmref.N) mynorm = mcolors.BoundaryNorm(bounds, cmshould.N, extend='min') assert mynorm.vmin == refnorm.vmin assert mynorm.vmax == refnorm.vmax x = [-1, 1.2, 2.3] assert_array_equal(cmshould(mynorm(x)), cmshould([0, 1, 2])) x = np.random.randn(100) * 10 + 2 assert_array_equal(cmshould(mynorm(x)), cmref(refnorm(x))) # Just max cmref = mcolors.ListedColormap(['blue', 'red']) cmref.set_over('black') cmshould = mcolors.ListedColormap(['blue', 'red', 'black']) assert mcolors.same_color(cmref.get_over(), 'black') assert cmref.N == 2 assert cmshould.N == 3 refnorm = mcolors.BoundaryNorm(bounds, cmref.N) mynorm = mcolors.BoundaryNorm(bounds, cmshould.N, extend='max') assert mynorm.vmin == refnorm.vmin assert mynorm.vmax == refnorm.vmax x = [1.2, 2.3, 4] assert_array_equal(cmshould(mynorm(x)), cmshould([0, 1, 2])) x = np.random.randn(100) * 10 + 2 assert_array_equal(cmshould(mynorm(x)), cmref(refnorm(x))) def test_CenteredNorm(): np.random.seed(0) # Assert equivalence to symmetrical Normalize. x = np.random.normal(size=100) x_maxabs = np.max(np.abs(x)) norm_ref = mcolors.Normalize(vmin=-x_maxabs, vmax=x_maxabs) norm = mcolors.CenteredNorm() assert_array_almost_equal(norm_ref(x), norm(x)) # Check that vcenter is in the center of vmin and vmax # when vcenter is set. vcenter = int(np.random.normal(scale=50)) norm = mcolors.CenteredNorm(vcenter=vcenter) norm.autoscale_None([1, 2]) assert norm.vmax + norm.vmin == 2 * vcenter # Check that halfrange can be set without setting vcenter and that it is # not reset through autoscale_None. norm = mcolors.CenteredNorm(halfrange=1.0) norm.autoscale_None([1, 3000]) assert norm.halfrange == 1.0 # Check that halfrange input works correctly. x = np.random.normal(size=10) norm = mcolors.CenteredNorm(vcenter=0.5, halfrange=0.5) assert_array_almost_equal(x, norm(x)) norm = mcolors.CenteredNorm(vcenter=1, halfrange=1) assert_array_almost_equal(x, 2 * norm(x)) # Check that halfrange input works correctly and use setters. norm = mcolors.CenteredNorm() norm.vcenter = 2 norm.halfrange = 2 assert_array_almost_equal(x, 4 * norm(x)) # Check that prior to adding data, setting halfrange first has same effect. norm = mcolors.CenteredNorm() norm.halfrange = 2 norm.vcenter = 2 assert_array_almost_equal(x, 4 * norm(x)) # Check that manual change of vcenter adjusts halfrange accordingly. norm = mcolors.CenteredNorm() assert norm.vcenter == 0 # add data norm(np.linspace(-1.0, 0.0, 10)) assert norm.vmax == 1.0 assert norm.halfrange == 1.0 # set vcenter to 1, which should double halfrange norm.vcenter = 1 assert norm.vmin == -1.0 assert norm.vmax == 3.0 assert norm.halfrange == 2.0 @pytest.mark.parametrize("vmin,vmax", [[-1, 2], [3, 1]]) def test_lognorm_invalid(vmin, vmax): # Check that invalid limits in LogNorm error norm = mcolors.LogNorm(vmin=vmin, vmax=vmax) with pytest.raises(ValueError): norm(1) with pytest.raises(ValueError): norm.inverse(1) def test_LogNorm(): """ LogNorm ignored clip, now it has the same behavior as Normalize, e.g., values > vmax are bigger than 1 without clip, with clip they are 1. """ ln = mcolors.LogNorm(clip=True, vmax=5) assert_array_equal(ln([1, 6]), [0, 1.0]) def test_LogNorm_inverse(): """ Test that lists work, and that the inverse works """ norm = mcolors.LogNorm(vmin=0.1, vmax=10) assert_array_almost_equal(norm([0.5, 0.4]), [0.349485, 0.30103]) assert_array_almost_equal([0.5, 0.4], norm.inverse([0.349485, 0.30103])) assert_array_almost_equal(norm(0.4), [0.30103]) assert_array_almost_equal([0.4], norm.inverse([0.30103])) def test_PowerNorm(): a = np.array([0, 0.5, 1, 1.5], dtype=float) pnorm = mcolors.PowerNorm(1) norm = mcolors.Normalize() assert_array_almost_equal(norm(a), pnorm(a)) a = np.array([-0.5, 0, 2, 4, 8], dtype=float) expected = [0, 0, 1/16, 1/4, 1] pnorm = mcolors.PowerNorm(2, vmin=0, vmax=8) assert_array_almost_equal(pnorm(a), expected) assert pnorm(a[0]) == expected[0] assert pnorm(a[2]) == expected[2] assert_array_almost_equal(a[1:], pnorm.inverse(pnorm(a))[1:]) # Clip = True a = np.array([-0.5, 0, 1, 8, 16], dtype=float) expected = [0, 0, 0, 1, 1] pnorm = mcolors.PowerNorm(2, vmin=2, vmax=8, clip=True) assert_array_almost_equal(pnorm(a), expected) assert pnorm(a[0]) == expected[0] assert pnorm(a[-1]) == expected[-1] # Clip = True at call time a = np.array([-0.5, 0, 1, 8, 16], dtype=float) expected = [0, 0, 0, 1, 1] pnorm = mcolors.PowerNorm(2, vmin=2, vmax=8, clip=False) assert_array_almost_equal(pnorm(a, clip=True), expected) assert pnorm(a[0], clip=True) == expected[0] assert pnorm(a[-1], clip=True) == expected[-1] def test_PowerNorm_translation_invariance(): a = np.array([0, 1/2, 1], dtype=float) expected = [0, 1/8, 1] pnorm = mcolors.PowerNorm(vmin=0, vmax=1, gamma=3) assert_array_almost_equal(pnorm(a), expected) pnorm = mcolors.PowerNorm(vmin=-2, vmax=-1, gamma=3) assert_array_almost_equal(pnorm(a - 2), expected) def test_Normalize(): norm = mcolors.Normalize() vals = np.arange(-10, 10, 1, dtype=float) _inverse_tester(norm, vals) _scalar_tester(norm, vals) _mask_tester(norm, vals) # Handle integer input correctly (don't overflow when computing max-min, # i.e. 127-(-128) here). vals = np.array([-128, 127], dtype=np.int8) norm = mcolors.Normalize(vals.min(), vals.max()) assert_array_equal(np.asarray(norm(vals)), [0, 1]) # Don't lose precision on longdoubles (float128 on Linux): # for array inputs... vals = np.array([1.2345678901, 9.8765432109], dtype=np.longdouble) norm = mcolors.Normalize(vals.min(), vals.max()) assert_array_equal(np.asarray(norm(vals)), [0, 1]) # and for scalar ones. eps = np.finfo(np.longdouble).resolution norm = plt.Normalize(1, 1 + 100 * eps) # This returns exactly 0.5 when longdouble is extended precision (80-bit), # but only a value close to it when it is quadruple precision (128-bit). assert 0 < norm(1 + 50 * eps) < 1 def test_FuncNorm(): def forward(x): return (x**2) def inverse(x): return np.sqrt(x) norm = mcolors.FuncNorm((forward, inverse), vmin=0, vmax=10) expected = np.array([0, 0.25, 1]) input = np.array([0, 5, 10]) assert_array_almost_equal(norm(input), expected) assert_array_almost_equal(norm.inverse(expected), input) def forward(x): return np.log10(x) def inverse(x): return 10**x norm = mcolors.FuncNorm((forward, inverse), vmin=0.1, vmax=10) lognorm = mcolors.LogNorm(vmin=0.1, vmax=10) assert_array_almost_equal(norm([0.2, 5, 10]), lognorm([0.2, 5, 10])) assert_array_almost_equal(norm.inverse([0.2, 5, 10]), lognorm.inverse([0.2, 5, 10])) def test_TwoSlopeNorm_autoscale(): norm = mcolors.TwoSlopeNorm(vcenter=20) norm.autoscale([10, 20, 30, 40]) assert norm.vmin == 10. assert norm.vmax == 40. def test_TwoSlopeNorm_autoscale_None_vmin(): norm = mcolors.TwoSlopeNorm(2, vmin=0, vmax=None) norm.autoscale_None([1, 2, 3, 4, 5]) assert norm(5) == 1 assert norm.vmax == 5 def test_TwoSlopeNorm_autoscale_None_vmax(): norm = mcolors.TwoSlopeNorm(2, vmin=None, vmax=10) norm.autoscale_None([1, 2, 3, 4, 5]) assert norm(1) == 0 assert norm.vmin == 1 def test_TwoSlopeNorm_scale(): norm = mcolors.TwoSlopeNorm(2) assert norm.scaled() is False norm([1, 2, 3, 4]) assert norm.scaled() is True def test_TwoSlopeNorm_scaleout_center(): # test the vmin never goes above vcenter norm = mcolors.TwoSlopeNorm(vcenter=0) norm([1, 2, 3, 5]) assert norm.vmin == 0 assert norm.vmax == 5 def test_TwoSlopeNorm_scaleout_center_max(): # test the vmax never goes below vcenter norm = mcolors.TwoSlopeNorm(vcenter=0) norm([-1, -2, -3, -5]) assert norm.vmax == 0 assert norm.vmin == -5 def test_TwoSlopeNorm_Even(): norm = mcolors.TwoSlopeNorm(vmin=-1, vcenter=0, vmax=4) vals = np.array([-1.0, -0.5, 0.0, 1.0, 2.0, 3.0, 4.0]) expected = np.array([0.0, 0.25, 0.5, 0.625, 0.75, 0.875, 1.0]) assert_array_equal(norm(vals), expected) def test_TwoSlopeNorm_Odd(): norm = mcolors.TwoSlopeNorm(vmin=-2, vcenter=0, vmax=5) vals = np.array([-2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) expected = np.array([0.0, 0.25, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]) assert_array_equal(norm(vals), expected) def test_TwoSlopeNorm_VminEqualsVcenter(): with pytest.raises(ValueError): mcolors.TwoSlopeNorm(vmin=-2, vcenter=-2, vmax=2) def test_TwoSlopeNorm_VmaxEqualsVcenter(): with pytest.raises(ValueError): mcolors.TwoSlopeNorm(vmin=-2, vcenter=2, vmax=2) def test_TwoSlopeNorm_VminGTVcenter(): with pytest.raises(ValueError): mcolors.TwoSlopeNorm(vmin=10, vcenter=0, vmax=20) def test_TwoSlopeNorm_TwoSlopeNorm_VminGTVmax(): with pytest.raises(ValueError): mcolors.TwoSlopeNorm(vmin=10, vcenter=0, vmax=5) def test_TwoSlopeNorm_VcenterGTVmax(): with pytest.raises(ValueError): mcolors.TwoSlopeNorm(vmin=10, vcenter=25, vmax=20) def test_TwoSlopeNorm_premature_scaling(): norm = mcolors.TwoSlopeNorm(vcenter=2) with pytest.raises(ValueError): norm.inverse(np.array([0.1, 0.5, 0.9])) def test_SymLogNorm(): """ Test SymLogNorm behavior """ norm = mcolors.SymLogNorm(3, vmax=5, linscale=1.2, base=np.e) vals = np.array([-30, -1, 2, 6], dtype=float) normed_vals = norm(vals) expected = [0., 0.53980074, 0.826991, 1.02758204] assert_array_almost_equal(normed_vals, expected) _inverse_tester(norm, vals) _scalar_tester(norm, vals) _mask_tester(norm, vals) # Ensure that specifying vmin returns the same result as above norm = mcolors.SymLogNorm(3, vmin=-30, vmax=5, linscale=1.2, base=np.e) normed_vals = norm(vals) assert_array_almost_equal(normed_vals, expected) # test something more easily checked. norm = mcolors.SymLogNorm(1, vmin=-np.e**3, vmax=np.e**3, base=np.e) nn = norm([-np.e**3, -np.e**2, -np.e**1, -1, 0, 1, np.e**1, np.e**2, np.e**3]) xx = np.array([0., 0.109123, 0.218246, 0.32737, 0.5, 0.67263, 0.781754, 0.890877, 1.]) assert_array_almost_equal(nn, xx) norm = mcolors.SymLogNorm(1, vmin=-10**3, vmax=10**3, base=10) nn = norm([-10**3, -10**2, -10**1, -1, 0, 1, 10**1, 10**2, 10**3]) xx = np.array([0., 0.121622, 0.243243, 0.364865, 0.5, 0.635135, 0.756757, 0.878378, 1.]) assert_array_almost_equal(nn, xx) def test_SymLogNorm_colorbar(): """ Test un-called SymLogNorm in a colorbar. """ norm = mcolors.SymLogNorm(0.1, vmin=-1, vmax=1, linscale=1, base=np.e) fig = plt.figure() mcolorbar.ColorbarBase(fig.add_subplot(), norm=norm) plt.close(fig) def test_SymLogNorm_single_zero(): """ Test SymLogNorm to ensure it is not adding sub-ticks to zero label """ fig = plt.figure() norm = mcolors.SymLogNorm(1e-5, vmin=-1, vmax=1, base=np.e) cbar = mcolorbar.ColorbarBase(fig.add_subplot(), norm=norm) ticks = cbar.get_ticks() assert np.count_nonzero(ticks == 0) <= 1 plt.close(fig) def _inverse_tester(norm_instance, vals): """ Checks if the inverse of the given normalization is working. """ assert_array_almost_equal(norm_instance.inverse(norm_instance(vals)), vals) def _scalar_tester(norm_instance, vals): """ Checks if scalars and arrays are handled the same way. Tests only for float. """ scalar_result = [norm_instance(float(v)) for v in vals] assert_array_almost_equal(scalar_result, norm_instance(vals)) def _mask_tester(norm_instance, vals): """ Checks mask handling """ masked_array = np.ma.array(vals) masked_array[0] = np.ma.masked assert_array_equal(masked_array.mask, norm_instance(masked_array).mask) @image_comparison(['levels_and_colors.png']) def test_cmap_and_norm_from_levels_and_colors(): # Remove this line when this test image is regenerated. plt.rcParams['pcolormesh.snap'] = False data = np.linspace(-2, 4, 49).reshape(7, 7) levels = [-1, 2, 2.5, 3] colors = ['red', 'green', 'blue', 'yellow', 'black'] extend = 'both' cmap, norm = mcolors.from_levels_and_colors(levels, colors, extend=extend) ax = plt.axes() m = plt.pcolormesh(data, cmap=cmap, norm=norm) plt.colorbar(m) # Hide the axes labels (but not the colorbar ones, as they are useful) ax.tick_params(labelleft=False, labelbottom=False) @image_comparison(baseline_images=['boundarynorm_and_colorbar'], extensions=['png'], tol=1.0) def test_boundarynorm_and_colorbarbase(): # Remove this line when this test image is regenerated. plt.rcParams['pcolormesh.snap'] = False # Make a figure and axes with dimensions as desired. fig = plt.figure() ax1 = fig.add_axes([0.05, 0.80, 0.9, 0.15]) ax2 = fig.add_axes([0.05, 0.475, 0.9, 0.15]) ax3 = fig.add_axes([0.05, 0.15, 0.9, 0.15]) # Set the colormap and bounds bounds = [-1, 2, 5, 7, 12, 15] cmap = cm.get_cmap('viridis') # Default behavior norm = mcolors.BoundaryNorm(bounds, cmap.N) cb1 = mcolorbar.ColorbarBase(ax1, cmap=cmap, norm=norm, extend='both', orientation='horizontal', spacing='uniform') # New behavior norm = mcolors.BoundaryNorm(bounds, cmap.N, extend='both') cb2 = mcolorbar.ColorbarBase(ax2, cmap=cmap, norm=norm, orientation='horizontal') # User can still force to any extend='' if really needed norm = mcolors.BoundaryNorm(bounds, cmap.N, extend='both') cb3 = mcolorbar.ColorbarBase(ax3, cmap=cmap, norm=norm, extend='neither', orientation='horizontal') def test_cmap_and_norm_from_levels_and_colors2(): levels = [-1, 2, 2.5, 3] colors = ['red', (0, 1, 0), 'blue', (0.5, 0.5, 0.5), (0.0, 0.0, 0.0, 1.0)] clr = mcolors.to_rgba_array(colors) bad = (0.1, 0.1, 0.1, 0.1) no_color = (0.0, 0.0, 0.0, 0.0) masked_value = 'masked_value' # Define the test values which are of interest. # Note: levels are lev[i] <= v < lev[i+1] tests = [('both', None, {-2: clr[0], -1: clr[1], 2: clr[2], 2.25: clr[2], 3: clr[4], 3.5: clr[4], masked_value: bad}), ('min', -1, {-2: clr[0], -1: clr[1], 2: clr[2], 2.25: clr[2], 3: no_color, 3.5: no_color, masked_value: bad}), ('max', -1, {-2: no_color, -1: clr[0], 2: clr[1], 2.25: clr[1], 3: clr[3], 3.5: clr[3], masked_value: bad}), ('neither', -2, {-2: no_color, -1: clr[0], 2: clr[1], 2.25: clr[1], 3: no_color, 3.5: no_color, masked_value: bad}), ] for extend, i1, cases in tests: cmap, norm = mcolors.from_levels_and_colors(levels, colors[0:i1], extend=extend) cmap.set_bad(bad) for d_val, expected_color in cases.items(): if d_val == masked_value: d_val = np.ma.array([1], mask=True) else: d_val = [d_val] assert_array_equal(expected_color, cmap(norm(d_val))[0], 'Wih extend={0!r} and data ' 'value={1!r}'.format(extend, d_val)) with pytest.raises(ValueError): mcolors.from_levels_and_colors(levels, colors) def test_rgb_hsv_round_trip(): for a_shape in [(500, 500, 3), (500, 3), (1, 3), (3,)]: np.random.seed(0) tt = np.random.random(a_shape) assert_array_almost_equal( tt, mcolors.hsv_to_rgb(mcolors.rgb_to_hsv(tt))) assert_array_almost_equal( tt, mcolors.rgb_to_hsv(mcolors.hsv_to_rgb(tt))) def test_autoscale_masked(): # Test for #2336. Previously fully masked data would trigger a ValueError. data = np.ma.masked_all((12, 20)) plt.pcolor(data) plt.draw() @image_comparison(['light_source_shading_topo.png']) def test_light_source_topo_surface(): """Shades a DEM using different v.e.'s and blend modes.""" dem = cbook.get_sample_data('jacksboro_fault_dem.npz', np_load=True) elev = dem['elevation'] dx, dy = dem['dx'], dem['dy'] # Get the true cellsize in meters for accurate vertical exaggeration # Convert from decimal degrees to meters dx = 111320.0 * dx * np.cos(dem['ymin']) dy = 111320.0 * dy ls = mcolors.LightSource(315, 45) cmap = cm.gist_earth fig, axs = plt.subplots(nrows=3, ncols=3) for row, mode in zip(axs, ['hsv', 'overlay', 'soft']): for ax, ve in zip(row, [0.1, 1, 10]): rgb = ls.shade(elev, cmap, vert_exag=ve, dx=dx, dy=dy, blend_mode=mode) ax.imshow(rgb) ax.set(xticks=[], yticks=[]) def test_light_source_shading_default(): """ Array comparison test for the default "hsv" blend mode. Ensure the default result doesn't change without warning. """ y, x = np.mgrid[-1.2:1.2:8j, -1.2:1.2:8j] z = 10 * np.cos(x**2 + y**2) cmap = plt.cm.copper ls = mcolors.LightSource(315, 45) rgb = ls.shade(z, cmap) # Result stored transposed and rounded for more compact display... expect = np.array( [[[0.00, 0.45, 0.90, 0.90, 0.82, 0.62, 0.28, 0.00], [0.45, 0.94, 0.99, 1.00, 1.00, 0.96, 0.65, 0.17], [0.90, 0.99, 1.00, 1.00, 1.00, 1.00, 0.94, 0.35], [0.90, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.49], [0.82, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.41], [0.62, 0.96, 1.00, 1.00, 1.00, 1.00, 0.90, 0.07], [0.28, 0.65, 0.94, 1.00, 1.00, 0.90, 0.35, 0.01], [0.00, 0.17, 0.35, 0.49, 0.41, 0.07, 0.01, 0.00]], [[0.00, 0.28, 0.59, 0.72, 0.62, 0.40, 0.18, 0.00], [0.28, 0.78, 0.93, 0.92, 0.83, 0.66, 0.39, 0.11], [0.59, 0.93, 0.99, 1.00, 0.92, 0.75, 0.50, 0.21], [0.72, 0.92, 1.00, 0.99, 0.93, 0.76, 0.51, 0.18], [0.62, 0.83, 0.92, 0.93, 0.87, 0.68, 0.42, 0.08], [0.40, 0.66, 0.75, 0.76, 0.68, 0.52, 0.23, 0.02], [0.18, 0.39, 0.50, 0.51, 0.42, 0.23, 0.00, 0.00], [0.00, 0.11, 0.21, 0.18, 0.08, 0.02, 0.00, 0.00]], [[0.00, 0.18, 0.38, 0.46, 0.39, 0.26, 0.11, 0.00], [0.18, 0.50, 0.70, 0.75, 0.64, 0.44, 0.25, 0.07], [0.38, 0.70, 0.91, 0.98, 0.81, 0.51, 0.29, 0.13], [0.46, 0.75, 0.98, 0.96, 0.84, 0.48, 0.22, 0.12], [0.39, 0.64, 0.81, 0.84, 0.71, 0.31, 0.11, 0.05], [0.26, 0.44, 0.51, 0.48, 0.31, 0.10, 0.03, 0.01], [0.11, 0.25, 0.29, 0.22, 0.11, 0.03, 0.00, 0.00], [0.00, 0.07, 0.13, 0.12, 0.05, 0.01, 0.00, 0.00]], [[1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00], [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00], [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00], [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00], [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00], [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00], [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00], [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00]] ]).T assert_array_almost_equal(rgb, expect, decimal=2) def test_light_source_shading_empty_mask(): y, x = np.mgrid[-1.2:1.2:8j, -1.2:1.2:8j] z0 = 10 * np.cos(x**2 + y**2) z1 = np.ma.array(z0) cmap = plt.cm.copper ls = mcolors.LightSource(315, 45) rgb0 = ls.shade(z0, cmap) rgb1 = ls.shade(z1, cmap) assert_array_almost_equal(rgb0, rgb1) # Numpy 1.9.1 fixed a bug in masked arrays which resulted in # additional elements being masked when calculating the gradient thus # the output is different with earlier numpy versions. def test_light_source_masked_shading(): """ Array comparison test for a surface with a masked portion. Ensures that we don't wind up with "fringes" of odd colors around masked regions. """ y, x = np.mgrid[-1.2:1.2:8j, -1.2:1.2:8j] z = 10 * np.cos(x**2 + y**2) z = np.ma.masked_greater(z, 9.9) cmap = plt.cm.copper ls = mcolors.LightSource(315, 45) rgb = ls.shade(z, cmap) # Result stored transposed and rounded for more compact display... expect = np.array( [[[0.00, 0.46, 0.91, 0.91, 0.84, 0.64, 0.29, 0.00], [0.46, 0.96, 1.00, 1.00, 1.00, 0.97, 0.67, 0.18], [0.91, 1.00, 1.00, 1.00, 1.00, 1.00, 0.96, 0.36], [0.91, 1.00, 1.00, 0.00, 0.00, 1.00, 1.00, 0.51], [0.84, 1.00, 1.00, 0.00, 0.00, 1.00, 1.00, 0.44], [0.64, 0.97, 1.00, 1.00, 1.00, 1.00, 0.94, 0.09], [0.29, 0.67, 0.96, 1.00, 1.00, 0.94, 0.38, 0.01], [0.00, 0.18, 0.36, 0.51, 0.44, 0.09, 0.01, 0.00]], [[0.00, 0.29, 0.61, 0.75, 0.64, 0.41, 0.18, 0.00], [0.29, 0.81, 0.95, 0.93, 0.85, 0.68, 0.40, 0.11], [0.61, 0.95, 1.00, 0.78, 0.78, 0.77, 0.52, 0.22], [0.75, 0.93, 0.78, 0.00, 0.00, 0.78, 0.54, 0.19], [0.64, 0.85, 0.78, 0.00, 0.00, 0.78, 0.45, 0.08], [0.41, 0.68, 0.77, 0.78, 0.78, 0.55, 0.25, 0.02], [0.18, 0.40, 0.52, 0.54, 0.45, 0.25, 0.00, 0.00], [0.00, 0.11, 0.22, 0.19, 0.08, 0.02, 0.00, 0.00]], [[0.00, 0.19, 0.39, 0.48, 0.41, 0.26, 0.12, 0.00], [0.19, 0.52, 0.73, 0.78, 0.66, 0.46, 0.26, 0.07], [0.39, 0.73, 0.95, 0.50, 0.50, 0.53, 0.30, 0.14], [0.48, 0.78, 0.50, 0.00, 0.00, 0.50, 0.23, 0.12], [0.41, 0.66, 0.50, 0.00, 0.00, 0.50, 0.11, 0.05], [0.26, 0.46, 0.53, 0.50, 0.50, 0.11, 0.03, 0.01], [0.12, 0.26, 0.30, 0.23, 0.11, 0.03, 0.00, 0.00], [0.00, 0.07, 0.14, 0.12, 0.05, 0.01, 0.00, 0.00]], [[1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00], [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00], [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00], [1.00, 1.00, 1.00, 0.00, 0.00, 1.00, 1.00, 1.00], [1.00, 1.00, 1.00, 0.00, 0.00, 1.00, 1.00, 1.00], [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00], [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00], [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00]], ]).T assert_array_almost_equal(rgb, expect, decimal=2) def test_light_source_hillshading(): """ Compare the current hillshading method against one that should be mathematically equivalent. Illuminates a cone from a range of angles. """ def alternative_hillshade(azimuth, elev, z): illum = _sph2cart(*_azimuth2math(azimuth, elev)) illum = np.array(illum) dy, dx = np.gradient(-z) dy = -dy dz = np.ones_like(dy) normals = np.dstack([dx, dy, dz]) normals /= np.linalg.norm(normals, axis=2)[..., None] intensity = np.tensordot(normals, illum, axes=(2, 0)) intensity -= intensity.min() intensity /= intensity.ptp() return intensity y, x = np.mgrid[5:0:-1, :5] z = -np.hypot(x - x.mean(), y - y.mean()) for az, elev in itertools.product(range(0, 390, 30), range(0, 105, 15)): ls = mcolors.LightSource(az, elev) h1 = ls.hillshade(z) h2 = alternative_hillshade(az, elev, z) assert_array_almost_equal(h1, h2) def test_light_source_planar_hillshading(): """ Ensure that the illumination intensity is correct for planar surfaces. """ def plane(azimuth, elevation, x, y): """ Create a plane whose normal vector is at the given azimuth and elevation. """ theta, phi = _azimuth2math(azimuth, elevation) a, b, c = _sph2cart(theta, phi) z = -(a*x + b*y) / c return z def angled_plane(azimuth, elevation, angle, x, y): """ Create a plane whose normal vector is at an angle from the given azimuth and elevation. """ elevation = elevation + angle if elevation > 90: azimuth = (azimuth + 180) % 360 elevation = (90 - elevation) % 90 return plane(azimuth, elevation, x, y) y, x = np.mgrid[5:0:-1, :5] for az, elev in itertools.product(range(0, 390, 30), range(0, 105, 15)): ls = mcolors.LightSource(az, elev) # Make a plane at a range of angles to the illumination for angle in range(0, 105, 15): z = angled_plane(az, elev, angle, x, y) h = ls.hillshade(z) assert_array_almost_equal(h, np.cos(np.radians(angle))) def test_color_names(): assert mcolors.to_hex("blue") == "#0000ff" assert mcolors.to_hex("xkcd:blue") == "#0343df" assert mcolors.to_hex("tab:blue") == "#1f77b4" def _sph2cart(theta, phi): x = np.cos(theta) * np.sin(phi) y = np.sin(theta) * np.sin(phi) z = np.cos(phi) return x, y, z def _azimuth2math(azimuth, elevation): """ Convert from clockwise-from-north and up-from-horizontal to mathematical conventions. """ theta = np.radians((90 - azimuth) % 360) phi = np.radians(90 - elevation) return theta, phi def test_pandas_iterable(pd): # Using a list or series yields equivalent # colormaps, i.e the series isn't seen as # a single color lst = ['red', 'blue', 'green'] s = pd.Series(lst) cm1 = mcolors.ListedColormap(lst, N=5) cm2 = mcolors.ListedColormap(s, N=5) assert_array_equal(cm1.colors, cm2.colors) @pytest.mark.parametrize('name', sorted(plt.colormaps())) def test_colormap_reversing(name): """ Check the generated _lut data of a colormap and corresponding reversed colormap if they are almost the same. """ cmap = plt.get_cmap(name) cmap_r = cmap.reversed() if not cmap_r._isinit: cmap._init() cmap_r._init() assert_array_almost_equal(cmap._lut[:-3], cmap_r._lut[-4::-1]) # Test the bad, over, under values too assert_array_almost_equal(cmap(-np.inf), cmap_r(np.inf)) assert_array_almost_equal(cmap(np.inf), cmap_r(-np.inf)) assert_array_almost_equal(cmap(np.nan), cmap_r(np.nan)) def test_cn(): matplotlib.rcParams['axes.prop_cycle'] = cycler('color', ['blue', 'r']) assert mcolors.to_hex("C0") == '#0000ff' assert mcolors.to_hex("C1") == '#ff0000' matplotlib.rcParams['axes.prop_cycle'] = cycler('color', ['xkcd:blue', 'r']) assert mcolors.to_hex("C0") == '#0343df' assert mcolors.to_hex("C1") == '#ff0000' assert mcolors.to_hex("C10") == '#0343df' assert mcolors.to_hex("C11") == '#ff0000' matplotlib.rcParams['axes.prop_cycle'] = cycler('color', ['8e4585', 'r']) assert mcolors.to_hex("C0") == '#8e4585' # if '8e4585' gets parsed as a float before it gets detected as a hex # colour it will be interpreted as a very large number. # this mustn't happen. assert mcolors.to_rgb("C0")[0] != np.inf def test_conversions(): # to_rgba_array("none") returns a (0, 4) array. assert_array_equal(mcolors.to_rgba_array("none"), np.zeros((0, 4))) assert_array_equal(mcolors.to_rgba_array([]), np.zeros((0, 4))) # a list of grayscale levels, not a single color. assert_array_equal( mcolors.to_rgba_array([".2", ".5", ".8"]), np.vstack([mcolors.to_rgba(c) for c in [".2", ".5", ".8"]])) # alpha is properly set. assert mcolors.to_rgba((1, 1, 1), .5) == (1, 1, 1, .5) assert mcolors.to_rgba(".1", .5) == (.1, .1, .1, .5) # builtin round differs between py2 and py3. assert mcolors.to_hex((.7, .7, .7)) == "#b2b2b2" # hex roundtrip. hex_color = "#1234abcd" assert mcolors.to_hex(mcolors.to_rgba(hex_color), keep_alpha=True) == \ hex_color def test_conversions_masked(): x1 = np.ma.array(['k', 'b'], mask=[True, False]) x2 = np.ma.array([[0, 0, 0, 1], [0, 0, 1, 1]]) x2[0] = np.ma.masked assert mcolors.to_rgba(x1[0]) == (0, 0, 0, 0) assert_array_equal(mcolors.to_rgba_array(x1), [[0, 0, 0, 0], [0, 0, 1, 1]]) assert_array_equal(mcolors.to_rgba_array(x2), mcolors.to_rgba_array(x1)) def test_to_rgba_array_single_str(): # single color name is valid assert_array_equal(mcolors.to_rgba_array("red"), [(1, 0, 0, 1)]) # single char color sequence is invalid with pytest.raises(ValueError, match="Using a string of single character colors as " "a color sequence is not supported."): array = mcolors.to_rgba_array("rgb") def test_to_rgba_array_alpha_array(): with pytest.raises(ValueError, match="The number of colors must match"): mcolors.to_rgba_array(np.ones((5, 3), float), alpha=np.ones((2,))) alpha = [0.5, 0.6] c = mcolors.to_rgba_array(np.ones((2, 3), float), alpha=alpha) assert_array_equal(c[:, 3], alpha) c = mcolors.to_rgba_array(['r', 'g'], alpha=alpha) assert_array_equal(c[:, 3], alpha) def test_failed_conversions(): with pytest.raises(ValueError): mcolors.to_rgba('5') with pytest.raises(ValueError): mcolors.to_rgba('-1') with pytest.raises(ValueError): mcolors.to_rgba('nan') with pytest.raises(ValueError): mcolors.to_rgba('unknown_color') with pytest.raises(ValueError): # Gray must be a string to distinguish 3-4 grays from RGB or RGBA. mcolors.to_rgba(0.4) def test_grey_gray(): color_mapping = mcolors._colors_full_map for k in color_mapping.keys(): if 'grey' in k: assert color_mapping[k] == color_mapping[k.replace('grey', 'gray')] if 'gray' in k: assert color_mapping[k] == color_mapping[k.replace('gray', 'grey')] def test_tableau_order(): dflt_cycle = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] assert list(mcolors.TABLEAU_COLORS.values()) == dflt_cycle def test_ndarray_subclass_norm(): # Emulate an ndarray subclass that handles units # which objects when adding or subtracting with other # arrays. See #6622 and #8696 class MyArray(np.ndarray): def __isub__(self, other): raise RuntimeError def __add__(self, other): raise RuntimeError data = np.arange(-10, 10, 1, dtype=float).reshape((10, 2)) mydata = data.view(MyArray) for norm in [mcolors.Normalize(), mcolors.LogNorm(), mcolors.SymLogNorm(3, vmax=5, linscale=1, base=np.e), mcolors.Normalize(vmin=mydata.min(), vmax=mydata.max()), mcolors.SymLogNorm(3, vmin=mydata.min(), vmax=mydata.max(), base=np.e), mcolors.PowerNorm(1)]: assert_array_equal(norm(mydata), norm(data)) fig, ax = plt.subplots() ax.imshow(mydata, norm=norm) fig.canvas.draw() # Check that no warning is emitted. def test_same_color(): assert mcolors.same_color('k', (0, 0, 0)) assert not mcolors.same_color('w', (1, 1, 0)) assert mcolors.same_color(['red', 'blue'], ['r', 'b']) assert mcolors.same_color('none', 'none') assert not mcolors.same_color('none', 'red') with pytest.raises(ValueError): mcolors.same_color(['r', 'g', 'b'], ['r']) with pytest.raises(ValueError): mcolors.same_color(['red', 'green'], 'none') def test_hex_shorthand_notation(): assert mcolors.same_color("#123", "#112233") assert mcolors.same_color("#123a", "#112233aa") def test_repr_png(): cmap = plt.get_cmap('viridis') png = cmap._repr_png_() assert len(png) > 0 img = Image.open(BytesIO(png)) assert img.width > 0 assert img.height > 0 assert 'Title' in img.text assert 'Description' in img.text assert 'Author' in img.text assert 'Software' in img.text def test_repr_html(): cmap = plt.get_cmap('viridis') html = cmap._repr_html_() assert len(html) > 0 png = cmap._repr_png_() assert base64.b64encode(png).decode('ascii') in html assert cmap.name in html assert html.startswith('