from contextlib import ExitStack from copy import copy import io import os from pathlib import Path import platform import sys import urllib.request import numpy as np from numpy.testing import assert_array_equal from PIL import Image import matplotlib as mpl from matplotlib import ( _api, colors, image as mimage, patches, pyplot as plt, style, rcParams) from matplotlib.image import (AxesImage, BboxImage, FigureImage, NonUniformImage, PcolorImage) from matplotlib.testing.decorators import check_figures_equal, image_comparison from matplotlib.transforms import Bbox, Affine2D, TransformedBbox import matplotlib.ticker as mticker import pytest @image_comparison(['image_interps'], style='mpl20') def test_image_interps(): """Make the basic nearest, bilinear and bicubic interps.""" # Remove this line when this test image is regenerated. plt.rcParams['text.kerning_factor'] = 6 X = np.arange(100).reshape(5, 20) fig, (ax1, ax2, ax3) = plt.subplots(3) ax1.imshow(X, interpolation='nearest') ax1.set_title('three interpolations') ax1.set_ylabel('nearest') ax2.imshow(X, interpolation='bilinear') ax2.set_ylabel('bilinear') ax3.imshow(X, interpolation='bicubic') ax3.set_ylabel('bicubic') @image_comparison(['interp_alpha.png'], remove_text=True) def test_alpha_interp(): """Test the interpolation of the alpha channel on RGBA images""" fig, (axl, axr) = plt.subplots(1, 2) # full green image img = np.zeros((5, 5, 4)) img[..., 1] = np.ones((5, 5)) # transparent under main diagonal img[..., 3] = np.tril(np.ones((5, 5), dtype=np.uint8)) axl.imshow(img, interpolation="none") axr.imshow(img, interpolation="bilinear") @image_comparison(['interp_nearest_vs_none'], extensions=['pdf', 'svg'], remove_text=True) def test_interp_nearest_vs_none(): """Test the effect of "nearest" and "none" interpolation""" # Setting dpi to something really small makes the difference very # visible. This works fine with pdf, since the dpi setting doesn't # affect anything but images, but the agg output becomes unusably # small. rcParams['savefig.dpi'] = 3 X = np.array([[[218, 165, 32], [122, 103, 238]], [[127, 255, 0], [255, 99, 71]]], dtype=np.uint8) fig, (ax1, ax2) = plt.subplots(1, 2) ax1.imshow(X, interpolation='none') ax1.set_title('interpolation none') ax2.imshow(X, interpolation='nearest') ax2.set_title('interpolation nearest') @pytest.mark.parametrize('suppressComposite', [False, True]) @image_comparison(['figimage'], extensions=['png', 'pdf']) def test_figimage(suppressComposite): fig = plt.figure(figsize=(2, 2), dpi=100) fig.suppressComposite = suppressComposite x, y = np.ix_(np.arange(100) / 100.0, np.arange(100) / 100) z = np.sin(x**2 + y**2 - x*y) c = np.sin(20*x**2 + 50*y**2) img = z + c/5 fig.figimage(img, xo=0, yo=0, origin='lower') fig.figimage(img[::-1, :], xo=0, yo=100, origin='lower') fig.figimage(img[:, ::-1], xo=100, yo=0, origin='lower') fig.figimage(img[::-1, ::-1], xo=100, yo=100, origin='lower') def test_image_python_io(): fig, ax = plt.subplots() ax.plot([1, 2, 3]) buffer = io.BytesIO() fig.savefig(buffer) buffer.seek(0) plt.imread(buffer) @pytest.mark.parametrize( "img_size, fig_size, interpolation", [(5, 2, "hanning"), # data larger than figure. (5, 5, "nearest"), # exact resample. (5, 10, "nearest"), # double sample. (3, 2.9, "hanning"), # <3 upsample. (3, 9.1, "nearest"), # >3 upsample. ]) @check_figures_equal(extensions=['png']) def test_imshow_antialiased(fig_test, fig_ref, img_size, fig_size, interpolation): np.random.seed(19680801) dpi = plt.rcParams["savefig.dpi"] A = np.random.rand(int(dpi * img_size), int(dpi * img_size)) for fig in [fig_test, fig_ref]: fig.set_size_inches(fig_size, fig_size) ax = fig_test.subplots() ax.set_position([0, 0, 1, 1]) ax.imshow(A, interpolation='antialiased') ax = fig_ref.subplots() ax.set_position([0, 0, 1, 1]) ax.imshow(A, interpolation=interpolation) @check_figures_equal(extensions=['png']) def test_imshow_zoom(fig_test, fig_ref): # should be less than 3 upsample, so should be nearest... np.random.seed(19680801) dpi = plt.rcParams["savefig.dpi"] A = np.random.rand(int(dpi * 3), int(dpi * 3)) for fig in [fig_test, fig_ref]: fig.set_size_inches(2.9, 2.9) ax = fig_test.subplots() ax.imshow(A, interpolation='antialiased') ax.set_xlim([10, 20]) ax.set_ylim([10, 20]) ax = fig_ref.subplots() ax.imshow(A, interpolation='nearest') ax.set_xlim([10, 20]) ax.set_ylim([10, 20]) @check_figures_equal() def test_imshow_pil(fig_test, fig_ref): style.use("default") png_path = Path(__file__).parent / "baseline_images/pngsuite/basn3p04.png" tiff_path = Path(__file__).parent / "baseline_images/test_image/uint16.tif" axs = fig_test.subplots(2) axs[0].imshow(Image.open(png_path)) axs[1].imshow(Image.open(tiff_path)) axs = fig_ref.subplots(2) axs[0].imshow(plt.imread(png_path)) axs[1].imshow(plt.imread(tiff_path)) def test_imread_pil_uint16(): img = plt.imread(os.path.join(os.path.dirname(__file__), 'baseline_images', 'test_image', 'uint16.tif')) assert img.dtype == np.uint16 assert np.sum(img) == 134184960 def test_imread_fspath(): img = plt.imread( Path(__file__).parent / 'baseline_images/test_image/uint16.tif') assert img.dtype == np.uint16 assert np.sum(img) == 134184960 @pytest.mark.parametrize("fmt", ["png", "jpg", "jpeg", "tiff"]) def test_imsave(fmt): has_alpha = fmt not in ["jpg", "jpeg"] # The goal here is that the user can specify an output logical DPI # for the image, but this will not actually add any extra pixels # to the image, it will merely be used for metadata purposes. # So we do the traditional case (dpi == 1), and the new case (dpi # == 100) and read the resulting PNG files back in and make sure # the data is 100% identical. np.random.seed(1) # The height of 1856 pixels was selected because going through creating an # actual dpi=100 figure to save the image to a Pillow-provided format would # cause a rounding error resulting in a final image of shape 1855. data = np.random.rand(1856, 2) buff_dpi1 = io.BytesIO() plt.imsave(buff_dpi1, data, format=fmt, dpi=1) buff_dpi100 = io.BytesIO() plt.imsave(buff_dpi100, data, format=fmt, dpi=100) buff_dpi1.seek(0) arr_dpi1 = plt.imread(buff_dpi1, format=fmt) buff_dpi100.seek(0) arr_dpi100 = plt.imread(buff_dpi100, format=fmt) assert arr_dpi1.shape == (1856, 2, 3 + has_alpha) assert arr_dpi100.shape == (1856, 2, 3 + has_alpha) assert_array_equal(arr_dpi1, arr_dpi100) @pytest.mark.parametrize("fmt", ["png", "pdf", "ps", "eps", "svg"]) def test_imsave_fspath(fmt): plt.imsave(Path(os.devnull), np.array([[0, 1]]), format=fmt) def test_imsave_color_alpha(): # Test that imsave accept arrays with ndim=3 where the third dimension is # color and alpha without raising any exceptions, and that the data is # acceptably preserved through a save/read roundtrip. np.random.seed(1) for origin in ['lower', 'upper']: data = np.random.rand(16, 16, 4) buff = io.BytesIO() plt.imsave(buff, data, origin=origin, format="png") buff.seek(0) arr_buf = plt.imread(buff) # Recreate the float -> uint8 conversion of the data # We can only expect to be the same with 8 bits of precision, # since that's what the PNG file used. data = (255*data).astype('uint8') if origin == 'lower': data = data[::-1] arr_buf = (255*arr_buf).astype('uint8') assert_array_equal(data, arr_buf) def test_imsave_pil_kwargs_png(): from PIL.PngImagePlugin import PngInfo buf = io.BytesIO() pnginfo = PngInfo() pnginfo.add_text("Software", "test") plt.imsave(buf, [[0, 1], [2, 3]], format="png", pil_kwargs={"pnginfo": pnginfo}) im = Image.open(buf) assert im.info["Software"] == "test" def test_imsave_pil_kwargs_tiff(): from PIL.TiffTags import TAGS_V2 as TAGS buf = io.BytesIO() pil_kwargs = {"description": "test image"} plt.imsave(buf, [[0, 1], [2, 3]], format="tiff", pil_kwargs=pil_kwargs) im = Image.open(buf) tags = {TAGS[k].name: v for k, v in im.tag_v2.items()} assert tags["ImageDescription"] == "test image" @image_comparison(['image_alpha'], remove_text=True) def test_image_alpha(): np.random.seed(0) Z = np.random.rand(6, 6) fig, (ax1, ax2, ax3) = plt.subplots(1, 3) ax1.imshow(Z, alpha=1.0, interpolation='none') ax2.imshow(Z, alpha=0.5, interpolation='none') ax3.imshow(Z, alpha=0.5, interpolation='nearest') def test_cursor_data(): from matplotlib.backend_bases import MouseEvent fig, ax = plt.subplots() im = ax.imshow(np.arange(100).reshape(10, 10), origin='upper') x, y = 4, 4 xdisp, ydisp = ax.transData.transform([x, y]) event = MouseEvent('motion_notify_event', fig.canvas, xdisp, ydisp) assert im.get_cursor_data(event) == 44 # Now try for a point outside the image # Tests issue #4957 x, y = 10.1, 4 xdisp, ydisp = ax.transData.transform([x, y]) event = MouseEvent('motion_notify_event', fig.canvas, xdisp, ydisp) assert im.get_cursor_data(event) is None # Hmm, something is wrong here... I get 0, not None... # But, this works further down in the tests with extents flipped # x, y = 0.1, -0.1 # xdisp, ydisp = ax.transData.transform([x, y]) # event = MouseEvent('motion_notify_event', fig.canvas, xdisp, ydisp) # z = im.get_cursor_data(event) # assert z is None, "Did not get None, got %d" % z ax.clear() # Now try with the extents flipped. im = ax.imshow(np.arange(100).reshape(10, 10), origin='lower') x, y = 4, 4 xdisp, ydisp = ax.transData.transform([x, y]) event = MouseEvent('motion_notify_event', fig.canvas, xdisp, ydisp) assert im.get_cursor_data(event) == 44 fig, ax = plt.subplots() im = ax.imshow(np.arange(100).reshape(10, 10), extent=[0, 0.5, 0, 0.5]) x, y = 0.25, 0.25 xdisp, ydisp = ax.transData.transform([x, y]) event = MouseEvent('motion_notify_event', fig.canvas, xdisp, ydisp) assert im.get_cursor_data(event) == 55 # Now try for a point outside the image # Tests issue #4957 x, y = 0.75, 0.25 xdisp, ydisp = ax.transData.transform([x, y]) event = MouseEvent('motion_notify_event', fig.canvas, xdisp, ydisp) assert im.get_cursor_data(event) is None x, y = 0.01, -0.01 xdisp, ydisp = ax.transData.transform([x, y]) event = MouseEvent('motion_notify_event', fig.canvas, xdisp, ydisp) assert im.get_cursor_data(event) is None # Now try with additional transform applied to the image artist trans = Affine2D().scale(2).rotate(0.5) im = ax.imshow(np.arange(100).reshape(10, 10), transform=trans + ax.transData) x, y = 3, 10 xdisp, ydisp = ax.transData.transform([x, y]) event = MouseEvent('motion_notify_event', fig.canvas, xdisp, ydisp) assert im.get_cursor_data(event) == 44 @pytest.mark.parametrize( "data, text", [ ([[10001, 10000]], "[10001.000]"), ([[.123, .987]], "[0.123]"), ([[np.nan, 1, 2]], "[]"), ([[1, 1+1e-15]], "[1.0000000000000000]"), ([[-1, -1]], "[-1.0000000000000000]"), ]) def test_format_cursor_data(data, text): from matplotlib.backend_bases import MouseEvent fig, ax = plt.subplots() im = ax.imshow(data) xdisp, ydisp = ax.transData.transform([0, 0]) event = MouseEvent('motion_notify_event', fig.canvas, xdisp, ydisp) assert im.format_cursor_data(im.get_cursor_data(event)) == text @image_comparison(['image_clip'], style='mpl20') def test_image_clip(): d = [[1, 2], [3, 4]] fig, ax = plt.subplots() im = ax.imshow(d) patch = patches.Circle((0, 0), radius=1, transform=ax.transData) im.set_clip_path(patch) @image_comparison(['image_cliprect'], style='mpl20') def test_image_cliprect(): fig, ax = plt.subplots() d = [[1, 2], [3, 4]] im = ax.imshow(d, extent=(0, 5, 0, 5)) rect = patches.Rectangle( xy=(1, 1), width=2, height=2, transform=im.axes.transData) im.set_clip_path(rect) @image_comparison(['imshow'], remove_text=True, style='mpl20') def test_imshow(): fig, ax = plt.subplots() arr = np.arange(100).reshape((10, 10)) ax.imshow(arr, interpolation="bilinear", extent=(1, 2, 1, 2)) ax.set_xlim(0, 3) ax.set_ylim(0, 3) @check_figures_equal(extensions=['png']) def test_imshow_10_10_1(fig_test, fig_ref): # 10x10x1 should be the same as 10x10 arr = np.arange(100).reshape((10, 10, 1)) ax = fig_ref.subplots() ax.imshow(arr[:, :, 0], interpolation="bilinear", extent=(1, 2, 1, 2)) ax.set_xlim(0, 3) ax.set_ylim(0, 3) ax = fig_test.subplots() ax.imshow(arr, interpolation="bilinear", extent=(1, 2, 1, 2)) ax.set_xlim(0, 3) ax.set_ylim(0, 3) def test_imshow_10_10_2(): fig, ax = plt.subplots() arr = np.arange(200).reshape((10, 10, 2)) with pytest.raises(TypeError): ax.imshow(arr) def test_imshow_10_10_5(): fig, ax = plt.subplots() arr = np.arange(500).reshape((10, 10, 5)) with pytest.raises(TypeError): ax.imshow(arr) @image_comparison(['no_interpolation_origin'], remove_text=True) def test_no_interpolation_origin(): fig, axs = plt.subplots(2) axs[0].imshow(np.arange(100).reshape((2, 50)), origin="lower", interpolation='none') axs[1].imshow(np.arange(100).reshape((2, 50)), interpolation='none') @image_comparison(['image_shift'], remove_text=True, extensions=['pdf', 'svg']) def test_image_shift(): imgData = [[1 / x + 1 / y for x in range(1, 100)] for y in range(1, 100)] tMin = 734717.945208 tMax = 734717.946366 fig, ax = plt.subplots() ax.imshow(imgData, norm=colors.LogNorm(), interpolation='none', extent=(tMin, tMax, 1, 100)) ax.set_aspect('auto') def test_image_edges(): fig = plt.figure(figsize=[1, 1]) ax = fig.add_axes([0, 0, 1, 1], frameon=False) data = np.tile(np.arange(12), 15).reshape(20, 9) im = ax.imshow(data, origin='upper', extent=[-10, 10, -10, 10], interpolation='none', cmap='gray') x = y = 2 ax.set_xlim([-x, x]) ax.set_ylim([-y, y]) ax.set_xticks([]) ax.set_yticks([]) buf = io.BytesIO() fig.savefig(buf, facecolor=(0, 1, 0)) buf.seek(0) im = plt.imread(buf) r, g, b, a = sum(im[:, 0]) r, g, b, a = sum(im[:, -1]) assert g != 100, 'Expected a non-green edge - but sadly, it was.' @image_comparison(['image_composite_background'], remove_text=True, style='mpl20') def test_image_composite_background(): fig, ax = plt.subplots() arr = np.arange(12).reshape(4, 3) ax.imshow(arr, extent=[0, 2, 15, 0]) ax.imshow(arr, extent=[4, 6, 15, 0]) ax.set_facecolor((1, 0, 0, 0.5)) ax.set_xlim([0, 12]) @image_comparison(['image_composite_alpha'], remove_text=True) def test_image_composite_alpha(): """ Tests that the alpha value is recognized and correctly applied in the process of compositing images together. """ fig, ax = plt.subplots() arr = np.zeros((11, 21, 4)) arr[:, :, 0] = 1 arr[:, :, 3] = np.concatenate( (np.arange(0, 1.1, 0.1), np.arange(0, 1, 0.1)[::-1])) arr2 = np.zeros((21, 11, 4)) arr2[:, :, 0] = 1 arr2[:, :, 1] = 1 arr2[:, :, 3] = np.concatenate( (np.arange(0, 1.1, 0.1), np.arange(0, 1, 0.1)[::-1]))[:, np.newaxis] ax.imshow(arr, extent=[1, 2, 5, 0], alpha=0.3) ax.imshow(arr, extent=[2, 3, 5, 0], alpha=0.6) ax.imshow(arr, extent=[3, 4, 5, 0]) ax.imshow(arr2, extent=[0, 5, 1, 2]) ax.imshow(arr2, extent=[0, 5, 2, 3], alpha=0.6) ax.imshow(arr2, extent=[0, 5, 3, 4], alpha=0.3) ax.set_facecolor((0, 0.5, 0, 1)) ax.set_xlim([0, 5]) ax.set_ylim([5, 0]) @check_figures_equal(extensions=["pdf"]) def test_clip_path_disables_compositing(fig_test, fig_ref): t = np.arange(9).reshape((3, 3)) for fig in [fig_test, fig_ref]: ax = fig.add_subplot() ax.imshow(t, clip_path=(mpl.path.Path([(0, 0), (0, 1), (1, 0)]), ax.transData)) ax.imshow(t, clip_path=(mpl.path.Path([(1, 1), (1, 2), (2, 1)]), ax.transData)) fig_ref.suppressComposite = True @image_comparison(['rasterize_10dpi'], extensions=['pdf', 'svg'], remove_text=True, style='mpl20') def test_rasterize_dpi(): # This test should check rasterized rendering with high output resolution. # It plots a rasterized line and a normal image with imshow. So it will # catch when images end up in the wrong place in case of non-standard dpi # setting. Instead of high-res rasterization I use low-res. Therefore # the fact that the resolution is non-standard is easily checked by # image_comparison. img = np.asarray([[1, 2], [3, 4]]) fig, axs = plt.subplots(1, 3, figsize=(3, 1)) axs[0].imshow(img) axs[1].plot([0, 1], [0, 1], linewidth=20., rasterized=True) axs[1].set(xlim=(0, 1), ylim=(-1, 2)) axs[2].plot([0, 1], [0, 1], linewidth=20.) axs[2].set(xlim=(0, 1), ylim=(-1, 2)) # Low-dpi PDF rasterization errors prevent proper image comparison tests. # Hide detailed structures like the axes spines. for ax in axs: ax.set_xticks([]) ax.set_yticks([]) ax.spines[:].set_visible(False) rcParams['savefig.dpi'] = 10 @image_comparison(['bbox_image_inverted'], remove_text=True, style='mpl20') def test_bbox_image_inverted(): # This is just used to produce an image to feed to BboxImage image = np.arange(100).reshape((10, 10)) fig, ax = plt.subplots() bbox_im = BboxImage( TransformedBbox(Bbox([[100, 100], [0, 0]]), ax.transData), interpolation='nearest') bbox_im.set_data(image) bbox_im.set_clip_on(False) ax.set_xlim(0, 100) ax.set_ylim(0, 100) ax.add_artist(bbox_im) image = np.identity(10) bbox_im = BboxImage(TransformedBbox(Bbox([[0.1, 0.2], [0.3, 0.25]]), ax.figure.transFigure), interpolation='nearest') bbox_im.set_data(image) bbox_im.set_clip_on(False) ax.add_artist(bbox_im) def test_get_window_extent_for_AxisImage(): # Create a figure of known size (1000x1000 pixels), place an image # object at a given location and check that get_window_extent() # returns the correct bounding box values (in pixels). im = np.array([[0.25, 0.75, 1.0, 0.75], [0.1, 0.65, 0.5, 0.4], [0.6, 0.3, 0.0, 0.2], [0.7, 0.9, 0.4, 0.6]]) fig, ax = plt.subplots(figsize=(10, 10), dpi=100) ax.set_position([0, 0, 1, 1]) ax.set_xlim(0, 1) ax.set_ylim(0, 1) im_obj = ax.imshow( im, extent=[0.4, 0.7, 0.2, 0.9], interpolation='nearest') fig.canvas.draw() renderer = fig.canvas.renderer im_bbox = im_obj.get_window_extent(renderer) assert_array_equal(im_bbox.get_points(), [[400, 200], [700, 900]]) @image_comparison(['zoom_and_clip_upper_origin.png'], remove_text=True, style='mpl20') def test_zoom_and_clip_upper_origin(): image = np.arange(100) image = image.reshape((10, 10)) fig, ax = plt.subplots() ax.imshow(image) ax.set_ylim(2.0, -0.5) ax.set_xlim(-0.5, 2.0) def test_nonuniformimage_setcmap(): ax = plt.gca() im = NonUniformImage(ax) im.set_cmap('Blues') def test_nonuniformimage_setnorm(): ax = plt.gca() im = NonUniformImage(ax) im.set_norm(plt.Normalize()) def test_jpeg_2d(): # smoke test that mode-L pillow images work. imd = np.ones((10, 10), dtype='uint8') for i in range(10): imd[i, :] = np.linspace(0.0, 1.0, 10) * 255 im = Image.new('L', (10, 10)) im.putdata(imd.flatten()) fig, ax = plt.subplots() ax.imshow(im) def test_jpeg_alpha(): plt.figure(figsize=(1, 1), dpi=300) # Create an image that is all black, with a gradient from 0-1 in # the alpha channel from left to right. im = np.zeros((300, 300, 4), dtype=float) im[..., 3] = np.linspace(0.0, 1.0, 300) plt.figimage(im) buff = io.BytesIO() plt.savefig(buff, facecolor="red", format='jpg', dpi=300) buff.seek(0) image = Image.open(buff) # If this fails, there will be only one color (all black). If this # is working, we should have all 256 shades of grey represented. num_colors = len(image.getcolors(256)) assert 175 <= num_colors <= 210 # The fully transparent part should be red. corner_pixel = image.getpixel((0, 0)) assert corner_pixel == (254, 0, 0) def test_axesimage_setdata(): ax = plt.gca() im = AxesImage(ax) z = np.arange(12, dtype=float).reshape((4, 3)) im.set_data(z) z[0, 0] = 9.9 assert im._A[0, 0] == 0, 'value changed' def test_figureimage_setdata(): fig = plt.gcf() im = FigureImage(fig) z = np.arange(12, dtype=float).reshape((4, 3)) im.set_data(z) z[0, 0] = 9.9 assert im._A[0, 0] == 0, 'value changed' @pytest.mark.parametrize( "image_cls,x,y,a", [ (NonUniformImage, np.arange(3.), np.arange(4.), np.arange(12.).reshape((4, 3))), (PcolorImage, np.arange(3.), np.arange(4.), np.arange(6.).reshape((3, 2))), ]) def test_setdata_xya(image_cls, x, y, a): ax = plt.gca() im = image_cls(ax) im.set_data(x, y, a) x[0] = y[0] = a[0, 0] = 9.9 assert im._A[0, 0] == im._Ax[0] == im._Ay[0] == 0, 'value changed' im.set_data(x, y, a.reshape((*a.shape, -1))) # Just a smoketest. def test_minimized_rasterized(): # This ensures that the rasterized content in the colorbars is # only as thick as the colorbar, and doesn't extend to other parts # of the image. See #5814. While the original bug exists only # in Postscript, the best way to detect it is to generate SVG # and then parse the output to make sure the two colorbar images # are the same size. from xml.etree import ElementTree np.random.seed(0) data = np.random.rand(10, 10) fig, ax = plt.subplots(1, 2) p1 = ax[0].pcolormesh(data) p2 = ax[1].pcolormesh(data) plt.colorbar(p1, ax=ax[0]) plt.colorbar(p2, ax=ax[1]) buff = io.BytesIO() plt.savefig(buff, format='svg') buff = io.BytesIO(buff.getvalue()) tree = ElementTree.parse(buff) width = None for image in tree.iter('image'): if width is None: width = image['width'] else: if image['width'] != width: assert False def test_load_from_url(): path = Path(__file__).parent / "baseline_images/pngsuite/basn3p04.png" url = ('file:' + ('///' if sys.platform == 'win32' else '') + path.resolve().as_posix()) with _api.suppress_matplotlib_deprecation_warning(): plt.imread(url) with urllib.request.urlopen(url) as file: plt.imread(file) @image_comparison(['log_scale_image'], remove_text=True) def test_log_scale_image(): Z = np.zeros((10, 10)) Z[::2] = 1 fig, ax = plt.subplots() ax.imshow(Z, extent=[1, 100, 1, 100], cmap='viridis', vmax=1, vmin=-1, aspect='auto') ax.set(yscale='log') # Increased tolerance is needed for PDF test to avoid failure. After the PDF # backend was modified to use indexed color, there are ten pixels that differ # due to how the subpixel calculation is done when converting the PDF files to # PNG images. @image_comparison(['rotate_image'], remove_text=True, tol=0.35) def test_rotate_image(): delta = 0.25 x = y = np.arange(-3.0, 3.0, delta) X, Y = np.meshgrid(x, y) Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi) Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) / (2 * np.pi * 0.5 * 1.5)) Z = Z2 - Z1 # difference of Gaussians fig, ax1 = plt.subplots(1, 1) im1 = ax1.imshow(Z, interpolation='none', cmap='viridis', origin='lower', extent=[-2, 4, -3, 2], clip_on=True) trans_data2 = Affine2D().rotate_deg(30) + ax1.transData im1.set_transform(trans_data2) # display intended extent of the image x1, x2, y1, y2 = im1.get_extent() ax1.plot([x1, x2, x2, x1, x1], [y1, y1, y2, y2, y1], "r--", lw=3, transform=trans_data2) ax1.set_xlim(2, 5) ax1.set_ylim(0, 4) def test_image_preserve_size(): buff = io.BytesIO() im = np.zeros((481, 321)) plt.imsave(buff, im, format="png") buff.seek(0) img = plt.imread(buff) assert img.shape[:2] == im.shape def test_image_preserve_size2(): n = 7 data = np.identity(n, float) fig = plt.figure(figsize=(n, n), frameon=False) ax = plt.Axes(fig, [0.0, 0.0, 1.0, 1.0]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(data, interpolation='nearest', origin='lower', aspect='auto') buff = io.BytesIO() fig.savefig(buff, dpi=1) buff.seek(0) img = plt.imread(buff) assert img.shape == (7, 7, 4) assert_array_equal(np.asarray(img[:, :, 0], bool), np.identity(n, bool)[::-1]) @image_comparison(['mask_image_over_under.png'], remove_text=True, tol=1.0) def test_mask_image_over_under(): # Remove this line when this test image is regenerated. plt.rcParams['pcolormesh.snap'] = False delta = 0.025 x = y = np.arange(-3.0, 3.0, delta) X, Y = np.meshgrid(x, y) Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi) Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) / (2 * np.pi * 0.5 * 1.5)) Z = 10*(Z2 - Z1) # difference of Gaussians palette = plt.cm.gray.with_extremes(over='r', under='g', bad='b') Zm = np.ma.masked_where(Z > 1.2, Z) fig, (ax1, ax2) = plt.subplots(1, 2) im = ax1.imshow(Zm, interpolation='bilinear', cmap=palette, norm=colors.Normalize(vmin=-1.0, vmax=1.0, clip=False), origin='lower', extent=[-3, 3, -3, 3]) ax1.set_title('Green=low, Red=high, Blue=bad') fig.colorbar(im, extend='both', orientation='horizontal', ax=ax1, aspect=10) im = ax2.imshow(Zm, interpolation='nearest', cmap=palette, norm=colors.BoundaryNorm([-1, -0.5, -0.2, 0, 0.2, 0.5, 1], ncolors=256, clip=False), origin='lower', extent=[-3, 3, -3, 3]) ax2.set_title('With BoundaryNorm') fig.colorbar(im, extend='both', spacing='proportional', orientation='horizontal', ax=ax2, aspect=10) @image_comparison(['mask_image'], remove_text=True) def test_mask_image(): # Test mask image two ways: Using nans and using a masked array. fig, (ax1, ax2) = plt.subplots(1, 2) A = np.ones((5, 5)) A[1:2, 1:2] = np.nan ax1.imshow(A, interpolation='nearest') A = np.zeros((5, 5), dtype=bool) A[1:2, 1:2] = True A = np.ma.masked_array(np.ones((5, 5), dtype=np.uint16), A) ax2.imshow(A, interpolation='nearest') def test_mask_image_all(): # Test behavior with an image that is entirely masked does not warn data = np.full((2, 2), np.nan) fig, ax = plt.subplots() ax.imshow(data) fig.canvas.draw_idle() # would emit a warning @image_comparison(['imshow_endianess.png'], remove_text=True) def test_imshow_endianess(): x = np.arange(10) X, Y = np.meshgrid(x, x) Z = np.hypot(X - 5, Y - 5) fig, (ax1, ax2) = plt.subplots(1, 2) kwargs = dict(origin="lower", interpolation='nearest', cmap='viridis') ax1.imshow(Z.astype('f8'), **kwargs) @image_comparison(['imshow_masked_interpolation'], tol=0 if platform.machine() == 'x86_64' else 0.01, remove_text=True, style='mpl20') def test_imshow_masked_interpolation(): cmap = plt.get_cmap('viridis').with_extremes(over='r', under='b', bad='k') N = 20 n = colors.Normalize(vmin=0, vmax=N*N-1) data = np.arange(N*N, dtype=float).reshape(N, N) data[5, 5] = -1 # This will cause crazy ringing for the higher-order # interpolations data[15, 5] = 1e5 # data[3, 3] = np.nan data[15, 15] = np.inf mask = np.zeros_like(data).astype('bool') mask[5, 15] = True data = np.ma.masked_array(data, mask) fig, ax_grid = plt.subplots(3, 6) interps = sorted(mimage._interpd_) interps.remove('antialiased') for interp, ax in zip(interps, ax_grid.ravel()): ax.set_title(interp) ax.imshow(data, norm=n, cmap=cmap, interpolation=interp) ax.axis('off') def test_imshow_no_warn_invalid(): plt.imshow([[1, 2], [3, np.nan]]) # Check that no warning is emitted. @pytest.mark.parametrize( 'dtype', [np.dtype(s) for s in 'u2 u4 i2 i4 i8 f4 f8'.split()]) def test_imshow_clips_rgb_to_valid_range(dtype): arr = np.arange(300, dtype=dtype).reshape((10, 10, 3)) if dtype.kind != 'u': arr -= 10 too_low = arr < 0 too_high = arr > 255 if dtype.kind == 'f': arr = arr / 255 _, ax = plt.subplots() out = ax.imshow(arr).get_array() assert (out[too_low] == 0).all() if dtype.kind == 'f': assert (out[too_high] == 1).all() assert out.dtype.kind == 'f' else: assert (out[too_high] == 255).all() assert out.dtype == np.uint8 @image_comparison(['imshow_flatfield.png'], remove_text=True, style='mpl20') def test_imshow_flatfield(): fig, ax = plt.subplots() im = ax.imshow(np.ones((5, 5)), interpolation='nearest') im.set_clim(.5, 1.5) @image_comparison(['imshow_bignumbers.png'], remove_text=True, style='mpl20') def test_imshow_bignumbers(): rcParams['image.interpolation'] = 'nearest' # putting a big number in an array of integers shouldn't # ruin the dynamic range of the resolved bits. fig, ax = plt.subplots() img = np.array([[1, 2, 1e12], [3, 1, 4]], dtype=np.uint64) pc = ax.imshow(img) pc.set_clim(0, 5) @image_comparison(['imshow_bignumbers_real.png'], remove_text=True, style='mpl20') def test_imshow_bignumbers_real(): rcParams['image.interpolation'] = 'nearest' # putting a big number in an array of integers shouldn't # ruin the dynamic range of the resolved bits. fig, ax = plt.subplots() img = np.array([[2., 1., 1.e22], [4., 1., 3.]]) pc = ax.imshow(img) pc.set_clim(0, 5) @pytest.mark.parametrize( "make_norm", [colors.Normalize, colors.LogNorm, lambda: colors.SymLogNorm(1), lambda: colors.PowerNorm(1)]) def test_empty_imshow(make_norm): fig, ax = plt.subplots() with pytest.warns(UserWarning, match="Attempting to set identical left == right"): im = ax.imshow([[]], norm=make_norm()) im.set_extent([-5, 5, -5, 5]) fig.canvas.draw() with pytest.raises(RuntimeError): im.make_image(fig._cachedRenderer) def test_imshow_float16(): fig, ax = plt.subplots() ax.imshow(np.zeros((3, 3), dtype=np.float16)) # Ensure that drawing doesn't cause crash. fig.canvas.draw() def test_imshow_float128(): fig, ax = plt.subplots() ax.imshow(np.zeros((3, 3), dtype=np.longdouble)) with (ExitStack() if np.can_cast(np.longdouble, np.float64, "equiv") else pytest.warns(UserWarning)): # Ensure that drawing doesn't cause crash. fig.canvas.draw() def test_imshow_bool(): fig, ax = plt.subplots() ax.imshow(np.array([[True, False], [False, True]], dtype=bool)) def test_full_invalid(): fig, ax = plt.subplots() ax.imshow(np.full((10, 10), np.nan)) fig.canvas.draw() @pytest.mark.parametrize("fmt,counted", [("ps", b" colorimage"), ("svg", b" 1e20 data = np.full((5, 5), x, dtype=np.float64) data[0:2, :] = 1E20 ax = fig_test.subplots() ax.imshow(data, norm=colors.LogNorm(vmin=1, vmax=data.max()), interpolation='nearest', cmap='viridis') data = np.full((5, 5), x, dtype=np.float64) data[0:2, :] = 1000 ax = fig_ref.subplots() cmap = plt.get_cmap('viridis').with_extremes(under='w') ax.imshow(data, norm=colors.Normalize(vmin=1, vmax=data.max()), interpolation='nearest', cmap=cmap) @check_figures_equal() def test_spy_box(fig_test, fig_ref): # setting up reference and test ax_test = fig_test.subplots(1, 3) ax_ref = fig_ref.subplots(1, 3) plot_data = ( [[1, 1], [1, 1]], [[0, 0], [0, 0]], [[0, 1], [1, 0]], ) plot_titles = ["ones", "zeros", "mixed"] for i, (z, title) in enumerate(zip(plot_data, plot_titles)): ax_test[i].set_title(title) ax_test[i].spy(z) ax_ref[i].set_title(title) ax_ref[i].imshow(z, interpolation='nearest', aspect='equal', origin='upper', cmap='Greys', vmin=0, vmax=1) ax_ref[i].set_xlim(-0.5, 1.5) ax_ref[i].set_ylim(1.5, -0.5) ax_ref[i].xaxis.tick_top() ax_ref[i].title.set_y(1.05) ax_ref[i].xaxis.set_ticks_position('both') ax_ref[i].xaxis.set_major_locator( mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True) ) ax_ref[i].yaxis.set_major_locator( mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True) ) @image_comparison(["nonuniform_and_pcolor.png"], style="mpl20") def test_nonuniform_and_pcolor(): axs = plt.figure(figsize=(3, 3)).subplots(3, sharex=True, sharey=True) for ax, interpolation in zip(axs, ["nearest", "bilinear"]): im = NonUniformImage(ax, interpolation=interpolation) im.set_data(np.arange(3) ** 2, np.arange(3) ** 2, np.arange(9).reshape((3, 3))) ax.add_image(im) axs[2].pcolorfast( # PcolorImage np.arange(4) ** 2, np.arange(4) ** 2, np.arange(9).reshape((3, 3))) for ax in axs: ax.set_axis_off() # NonUniformImage "leaks" out of extents, not PColorImage. ax.set(xlim=(0, 10)) @image_comparison(["rgba_antialias.png"], style="mpl20", remove_text=True) def test_rgba_antialias(): fig, axs = plt.subplots(2, 2, figsize=(3.5, 3.5), sharex=False, sharey=False, constrained_layout=True) N = 250 aa = np.ones((N, N)) aa[::2, :] = -1 x = np.arange(N) / N - 0.5 y = np.arange(N) / N - 0.5 X, Y = np.meshgrid(x, y) R = np.sqrt(X**2 + Y**2) f0 = 10 k = 75 # aliased concentric circles a = np.sin(np.pi * 2 * (f0 * R + k * R**2 / 2)) # stripes on lhs a[:int(N/2), :][R[:int(N/2), :] < 0.4] = -1 a[:int(N/2), :][R[:int(N/2), :] < 0.3] = 1 aa[:, int(N/2):] = a[:, int(N/2):] # set some over/unders and NaNs aa[20:50, 20:50] = np.NaN aa[70:90, 70:90] = 1e6 aa[70:90, 20:30] = -1e6 aa[70:90, 195:215] = 1e6 aa[20:30, 195:215] = -1e6 cmap = copy(plt.cm.RdBu_r) cmap.set_over('yellow') cmap.set_under('cyan') axs = axs.flatten() # zoom in axs[0].imshow(aa, interpolation='nearest', cmap=cmap, vmin=-1.2, vmax=1.2) axs[0].set_xlim([N/2-25, N/2+25]) axs[0].set_ylim([N/2+50, N/2-10]) # no anti-alias axs[1].imshow(aa, interpolation='nearest', cmap=cmap, vmin=-1.2, vmax=1.2) # data antialias: Note no purples, and white in circle. Note # that alternating red and blue stripes become white. axs[2].imshow(aa, interpolation='antialiased', interpolation_stage='data', cmap=cmap, vmin=-1.2, vmax=1.2) # rgba antialias: Note purples at boundary with circle. Note that # alternating red and blue stripes become purple axs[3].imshow(aa, interpolation='antialiased', interpolation_stage='rgba', cmap=cmap, vmin=-1.2, vmax=1.2)