# Ultralytics YOLOv5 🚀, AGPL-3.0 license """ Train a YOLOv5 model on a custom dataset. Models and datasets download automatically from the latest YOLOv5 release. Usage - Single-GPU training: $ python train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (recommended) $ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch Usage - Multi-GPU DDP training: $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3 Models: https://github.com/ultralytics/yolov5/tree/master/models Datasets: https://github.com/ultralytics/yolov5/tree/master/data Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data """ import argparse import math import os import random import subprocess import sys import time from copy import deepcopy from datetime import datetime, timedelta from pathlib import Path try: import comet_ml # must be imported before torch (if installed) except ImportError: comet_ml = None import numpy as np import torch import torch.distributed as dist import torch.nn as nn import yaml from torch.optim import lr_scheduler from tqdm import tqdm FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative import val as validate # for end-of-epoch mAP from models.experimental import attempt_load from models.yolo import Model from utils.autoanchor import check_anchors from utils.autobatch import check_train_batch_size from utils.callbacks import Callbacks from utils.dataloaders import create_dataloader from utils.downloads import attempt_download, is_url from utils.general import ( LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info, check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer, yaml_save, ) from utils.loggers import LOGGERS, Loggers from utils.loggers.comet.comet_utils import check_comet_resume from utils.loss import ComputeLoss from utils.metrics import fitness from utils.plots import plot_evolve from utils.torch_utils import ( EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer, smart_resume, torch_distributed_zero_first, ) LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html RANK = int(os.getenv("RANK", -1)) WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1)) GIT_INFO = check_git_info() def train(hyp, opt, device, callbacks): """ Trains YOLOv5 model with given hyperparameters, options, and device, managing datasets, model architecture, loss computation, and optimizer steps. `hyp` argument is path/to/hyp.yaml or hyp dictionary. """ save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = ( Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze, ) callbacks.run("on_pretrain_routine_start") # Directories w = save_dir / "weights" # weights dir (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir last, best = w / "last.pt", w / "best.pt" # Hyperparameters if isinstance(hyp, str): with open(hyp, errors="ignore") as f: hyp = yaml.safe_load(f) # load hyps dict LOGGER.info(colorstr("hyperparameters: ") + ", ".join(f"{k}={v}" for k, v in hyp.items())) opt.hyp = hyp.copy() # for saving hyps to checkpoints # Save run settings if not evolve: yaml_save(save_dir / "hyp.yaml", hyp) yaml_save(save_dir / "opt.yaml", vars(opt)) # Loggers data_dict = None if RANK in {-1, 0}: include_loggers = list(LOGGERS) if getattr(opt, "ndjson_console", False): include_loggers.append("ndjson_console") if getattr(opt, "ndjson_file", False): include_loggers.append("ndjson_file") loggers = Loggers( save_dir=save_dir, weights=weights, opt=opt, hyp=hyp, logger=LOGGER, include=tuple(include_loggers), ) # Register actions for k in methods(loggers): callbacks.register_action(k, callback=getattr(loggers, k)) # Process custom dataset artifact link data_dict = loggers.remote_dataset if resume: # If resuming runs from remote artifact weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size # Config plots = not evolve and not opt.noplots # create plots cuda = device.type != "cpu" init_seeds(opt.seed + 1 + RANK, deterministic=True) with torch_distributed_zero_first(LOCAL_RANK): data_dict = data_dict or check_dataset(data) # check if None train_path, val_path = data_dict["train"], data_dict["val"] nc = 1 if single_cls else int(data_dict["nc"]) # number of classes names = {0: "item"} if single_cls and len(data_dict["names"]) != 1 else data_dict["names"] # class names is_coco = isinstance(val_path, str) and val_path.endswith("coco/val2017.txt") # COCO dataset # Model check_suffix(weights, ".pt") # check weights pretrained = weights.endswith(".pt") if pretrained: with torch_distributed_zero_first(LOCAL_RANK): weights = attempt_download(weights) # download if not found locally ckpt = torch.load(weights, map_location="cpu") # load checkpoint to CPU to avoid CUDA memory leak model = Model(cfg or ckpt["model"].yaml, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device) # create exclude = ["anchor"] if (cfg or hyp.get("anchors")) and not resume else [] # exclude keys csd = ckpt["model"].float().state_dict() # checkpoint state_dict as FP32 csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(csd, strict=False) # load LOGGER.info(f"Transferred {len(csd)}/{len(model.state_dict())} items from {weights}") # report else: model = Model(cfg, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device) # create amp = check_amp(model) # check AMP # Freeze freeze = [f"model.{x}." for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze for k, v in model.named_parameters(): v.requires_grad = True # train all layers # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results) if any(x in k for x in freeze): LOGGER.info(f"freezing {k}") v.requires_grad = False # Image size gs = max(int(model.stride.max()), 32) # grid size (max stride) imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple # Batch size if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size batch_size = check_train_batch_size(model, imgsz, amp) loggers.on_params_update({"batch_size": batch_size}) # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing hyp["weight_decay"] *= batch_size * accumulate / nbs # scale weight_decay optimizer = smart_optimizer(model, opt.optimizer, hyp["lr0"], hyp["momentum"], hyp["weight_decay"]) # Scheduler if opt.cos_lr: lf = one_cycle(1, hyp["lrf"], epochs) # cosine 1->hyp['lrf'] else: lf = lambda x: (1 - x / epochs) * (1.0 - hyp["lrf"]) + hyp["lrf"] # linear scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # EMA ema = ModelEMA(model) if RANK in {-1, 0} else None # Resume best_fitness, start_epoch = 0.0, 0 if pretrained: if resume: best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume) del ckpt, csd # DP mode if cuda and RANK == -1 and torch.cuda.device_count() > 1: LOGGER.warning( "WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n" "See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started." ) model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and RANK != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) LOGGER.info("Using SyncBatchNorm()") # Trainloader train_loader, dataset = create_dataloader( train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, hyp=hyp, augment=True, cache=None if opt.cache == "val" else opt.cache, rect=opt.rect, rank=LOCAL_RANK, workers=workers, image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr("train: "), shuffle=True, seed=opt.seed, ) labels = np.concatenate(dataset.labels, 0) mlc = int(labels[:, 0].max()) # max label class assert mlc < nc, f"Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}" # Process 0 if RANK in {-1, 0}: val_loader = create_dataloader( val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls, hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1, workers=workers * 2, pad=0.5, prefix=colorstr("val: "), )[0] if not resume: if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz) # run AutoAnchor model.half().float() # pre-reduce anchor precision callbacks.run("on_pretrain_routine_end", labels, names) # DDP mode if cuda and RANK != -1: model = smart_DDP(model) # Model attributes nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps) hyp["box"] *= 3 / nl # scale to layers hyp["cls"] *= nc / 80 * 3 / nl # scale to classes and layers hyp["obj"] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers hyp["label_smoothing"] = opt.label_smoothing model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights model.names = names # Start training t0 = time.time() nb = len(train_loader) # number of batches nw = max(round(hyp["warmup_epochs"] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training last_opt_step = -1 maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) scheduler.last_epoch = start_epoch - 1 # do not move scaler = torch.cuda.amp.GradScaler(enabled=amp) stopper, stop = EarlyStopping(patience=opt.patience), False compute_loss = ComputeLoss(model) # init loss class callbacks.run("on_train_start") LOGGER.info( f'Image sizes {imgsz} train, {imgsz} val\n' f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' f"Logging results to {colorstr('bold', save_dir)}\n" f'Starting training for {epochs} epochs...' ) for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ callbacks.run("on_train_epoch_start") model.train() # Update image weights (optional, single-GPU only) if opt.image_weights: cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Update mosaic border (optional) # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(3, device=device) # mean losses if RANK != -1: train_loader.sampler.set_epoch(epoch) pbar = enumerate(train_loader) LOGGER.info(("\n" + "%11s" * 7) % ("Epoch", "GPU_mem", "box_loss", "obj_loss", "cls_loss", "Instances", "Size")) if RANK in {-1, 0}: pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar optimizer.zero_grad() for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- callbacks.run("on_train_batch_start") ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0 # Warmup if ni <= nw: xi = [0, nw] # x interp # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x["lr"] = np.interp(ni, xi, [hyp["warmup_bias_lr"] if j == 0 else 0.0, x["initial_lr"] * lf(epoch)]) if "momentum" in x: x["momentum"] = np.interp(ni, xi, [hyp["warmup_momentum"], hyp["momentum"]]) # Multi-scale if opt.multi_scale: sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False) # Forward with torch.cuda.amp.autocast(amp): pred = model(imgs) # forward loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size if RANK != -1: loss *= WORLD_SIZE # gradient averaged between devices in DDP mode if opt.quad: loss *= 4.0 # Backward scaler.scale(loss).backward() # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html if ni - last_opt_step >= accumulate: scaler.unscale_(optimizer) # unscale gradients torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) last_opt_step = ni # Log if RANK in {-1, 0}: mloss = (mloss * i + loss_items) / (i + 1) # update mean losses mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G" # (GB) pbar.set_description( ("%11s" * 2 + "%11.4g" * 5) % (f"{epoch}/{epochs - 1}", mem, *mloss, targets.shape[0], imgs.shape[-1]) ) callbacks.run("on_train_batch_end", model, ni, imgs, targets, paths, list(mloss)) if callbacks.stop_training: return # end batch ------------------------------------------------------------------------------------------------ # Scheduler lr = [x["lr"] for x in optimizer.param_groups] # for loggers scheduler.step() if RANK in {-1, 0}: # mAP callbacks.run("on_train_epoch_end", epoch=epoch) ema.update_attr(model, include=["yaml", "nc", "hyp", "names", "stride", "class_weights"]) final_epoch = (epoch + 1 == epochs) or stopper.possible_stop if not noval or final_epoch: # Calculate mAP results, maps, _ = validate.run( data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, half=amp, model=ema.ema, single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, plots=False, callbacks=callbacks, compute_loss=compute_loss, ) # Update best mAP fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] stop = stopper(epoch=epoch, fitness=fi) # early stop check if fi > best_fitness: best_fitness = fi log_vals = list(mloss) + list(results) + lr callbacks.run("on_fit_epoch_end", log_vals, epoch, best_fitness, fi) # Save model if (not nosave) or (final_epoch and not evolve): # if save ckpt = { "epoch": epoch, "best_fitness": best_fitness, "model": deepcopy(de_parallel(model)).half(), "ema": deepcopy(ema.ema).half(), "updates": ema.updates, "optimizer": optimizer.state_dict(), "opt": vars(opt), "git": GIT_INFO, # {remote, branch, commit} if a git repo "date": datetime.now().isoformat(), } # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) if opt.save_period > 0 and epoch % opt.save_period == 0: torch.save(ckpt, w / f"epoch{epoch}.pt") del ckpt callbacks.run("on_model_save", last, epoch, final_epoch, best_fitness, fi) # EarlyStopping if RANK != -1: # if DDP training broadcast_list = [stop if RANK == 0 else None] dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks if RANK != 0: stop = broadcast_list[0] if stop: break # must break all DDP ranks # end epoch ---------------------------------------------------------------------------------------------------- # end training ----------------------------------------------------------------------------------------------------- if RANK in {-1, 0}: LOGGER.info(f"\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.") for f in last, best: if f.exists(): strip_optimizer(f) # strip optimizers if f is best: LOGGER.info(f"\nValidating {f}...") results, _, _ = validate.run( data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, model=attempt_load(f, device).half(), iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65 single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, save_json=is_coco, verbose=True, plots=plots, callbacks=callbacks, compute_loss=compute_loss, ) # val best model with plots if is_coco: callbacks.run("on_fit_epoch_end", list(mloss) + list(results) + lr, epoch, best_fitness, fi) callbacks.run("on_train_end", last, best, epoch, results) torch.cuda.empty_cache() return results def parse_opt(known=False): """Parses command-line arguments for YOLOv5 training, validation, and testing.""" parser = argparse.ArgumentParser() parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="initial weights path") parser.add_argument("--cfg", type=str, default="", help="model.yaml path") parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path") parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path") parser.add_argument("--epochs", type=int, default=100, help="total training epochs") parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch") parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)") parser.add_argument("--rect", action="store_true", help="rectangular training") parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training") parser.add_argument("--nosave", action="store_true", help="only save final checkpoint") parser.add_argument("--noval", action="store_true", help="only validate final epoch") parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor") parser.add_argument("--noplots", action="store_true", help="save no plot files") parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations") parser.add_argument( "--evolve_population", type=str, default=ROOT / "data/hyps", help="location for loading population" ) parser.add_argument("--resume_evolve", type=str, default=None, help="resume evolve from last generation") parser.add_argument("--bucket", type=str, default="", help="gsutil bucket") parser.add_argument("--cache", type=str, nargs="?", const="ram", help="image --cache ram/disk") parser.add_argument("--image-weights", action="store_true", help="use weighted image selection for training") parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%") parser.add_argument("--single-cls", action="store_true", help="train multi-class data as single-class") parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer") parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode") parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)") parser.add_argument("--project", default=ROOT / "runs/train", help="save to project/name") parser.add_argument("--name", default="exp", help="save to project/name") parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment") parser.add_argument("--quad", action="store_true", help="quad dataloader") parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler") parser.add_argument("--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon") parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)") parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2") parser.add_argument("--save-period", type=int, default=-1, help="Save checkpoint every x epochs (disabled if < 1)") parser.add_argument("--seed", type=int, default=0, help="Global training seed") parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify") # Logger arguments parser.add_argument("--entity", default=None, help="Entity") parser.add_argument("--upload_dataset", nargs="?", const=True, default=False, help='Upload data, "val" option') parser.add_argument("--bbox_interval", type=int, default=-1, help="Set bounding-box image logging interval") parser.add_argument("--artifact_alias", type=str, default="latest", help="Version of dataset artifact to use") # NDJSON logging parser.add_argument("--ndjson-console", action="store_true", help="Log ndjson to console") parser.add_argument("--ndjson-file", action="store_true", help="Log ndjson to file") return parser.parse_known_args()[0] if known else parser.parse_args() def main(opt, callbacks=Callbacks()): """Runs training or hyperparameter evolution with specified options and optional callbacks.""" if RANK in {-1, 0}: print_args(vars(opt)) check_git_status() check_requirements(ROOT / "requirements.txt") # Resume (from specified or most recent last.pt) if opt.resume and not check_comet_resume(opt) and not opt.evolve: last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run()) opt_yaml = last.parent.parent / "opt.yaml" # train options yaml opt_data = opt.data # original dataset if opt_yaml.is_file(): with open(opt_yaml, errors="ignore") as f: d = yaml.safe_load(f) else: d = torch.load(last, map_location="cpu")["opt"] opt = argparse.Namespace(**d) # replace opt.cfg, opt.weights, opt.resume = "", str(last), True # reinstate if is_url(opt_data): opt.data = check_file(opt_data) # avoid HUB resume auth timeout else: opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = ( check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project), ) # checks assert len(opt.cfg) or len(opt.weights), "either --cfg or --weights must be specified" if opt.evolve: if opt.project == str(ROOT / "runs/train"): # if default project name, rename to runs/evolve opt.project = str(ROOT / "runs/evolve") opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume if opt.name == "cfg": opt.name = Path(opt.cfg).stem # use model.yaml as name opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # DDP mode device = select_device(opt.device, batch_size=opt.batch_size) if LOCAL_RANK != -1: msg = "is not compatible with YOLOv5 Multi-GPU DDP training" assert not opt.image_weights, f"--image-weights {msg}" assert not opt.evolve, f"--evolve {msg}" assert opt.batch_size != -1, f"AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size" assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE" assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command" torch.cuda.set_device(LOCAL_RANK) device = torch.device("cuda", LOCAL_RANK) dist.init_process_group( backend="nccl" if dist.is_nccl_available() else "gloo", timeout=timedelta(seconds=10800) ) # Train if not opt.evolve: train(opt.hyp, opt, device, callbacks) # Evolve hyperparameters (optional) else: # Hyperparameter evolution metadata (including this hyperparameter True-False, lower_limit, upper_limit) meta = { "lr0": (False, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) "lrf": (False, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) "momentum": (False, 0.6, 0.98), # SGD momentum/Adam beta1 "weight_decay": (False, 0.0, 0.001), # optimizer weight decay "warmup_epochs": (False, 0.0, 5.0), # warmup epochs (fractions ok) "warmup_momentum": (False, 0.0, 0.95), # warmup initial momentum "warmup_bias_lr": (False, 0.0, 0.2), # warmup initial bias lr "box": (False, 0.02, 0.2), # box loss gain "cls": (False, 0.2, 4.0), # cls loss gain "cls_pw": (False, 0.5, 2.0), # cls BCELoss positive_weight "obj": (False, 0.2, 4.0), # obj loss gain (scale with pixels) "obj_pw": (False, 0.5, 2.0), # obj BCELoss positive_weight "iou_t": (False, 0.1, 0.7), # IoU training threshold "anchor_t": (False, 2.0, 8.0), # anchor-multiple threshold "anchors": (False, 2.0, 10.0), # anchors per output grid (0 to ignore) "fl_gamma": (False, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) "hsv_h": (True, 0.0, 0.1), # image HSV-Hue augmentation (fraction) "hsv_s": (True, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) "hsv_v": (True, 0.0, 0.9), # image HSV-Value augmentation (fraction) "degrees": (True, 0.0, 45.0), # image rotation (+/- deg) "translate": (True, 0.0, 0.9), # image translation (+/- fraction) "scale": (True, 0.0, 0.9), # image scale (+/- gain) "shear": (True, 0.0, 10.0), # image shear (+/- deg) "perspective": (True, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 "flipud": (True, 0.0, 1.0), # image flip up-down (probability) "fliplr": (True, 0.0, 1.0), # image flip left-right (probability) "mosaic": (True, 0.0, 1.0), # image mixup (probability) "mixup": (True, 0.0, 1.0), # image mixup (probability) "copy_paste": (True, 0.0, 1.0), } # segment copy-paste (probability) # GA configs pop_size = 50 mutation_rate_min = 0.01 mutation_rate_max = 0.5 crossover_rate_min = 0.5 crossover_rate_max = 1 min_elite_size = 2 max_elite_size = 5 tournament_size_min = 2 tournament_size_max = 10 with open(opt.hyp, errors="ignore") as f: hyp = yaml.safe_load(f) # load hyps dict if "anchors" not in hyp: # anchors commented in hyp.yaml hyp["anchors"] = 3 if opt.noautoanchor: del hyp["anchors"], meta["anchors"] opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices evolve_yaml, evolve_csv = save_dir / "hyp_evolve.yaml", save_dir / "evolve.csv" if opt.bucket: # download evolve.csv if exists subprocess.run( [ "gsutil", "cp", f"gs://{opt.bucket}/evolve.csv", str(evolve_csv), ] ) # Delete the items in meta dictionary whose first value is False del_ = [item for item, value_ in meta.items() if value_[0] is False] hyp_GA = hyp.copy() # Make a copy of hyp dictionary for item in del_: del meta[item] # Remove the item from meta dictionary del hyp_GA[item] # Remove the item from hyp_GA dictionary # Set lower_limit and upper_limit arrays to hold the search space boundaries lower_limit = np.array([meta[k][1] for k in hyp_GA.keys()]) upper_limit = np.array([meta[k][2] for k in hyp_GA.keys()]) # Create gene_ranges list to hold the range of values for each gene in the population gene_ranges = [(lower_limit[i], upper_limit[i]) for i in range(len(upper_limit))] # Initialize the population with initial_values or random values initial_values = [] # If resuming evolution from a previous checkpoint if opt.resume_evolve is not None: assert os.path.isfile(ROOT / opt.resume_evolve), "evolve population path is wrong!" with open(ROOT / opt.resume_evolve, errors="ignore") as f: evolve_population = yaml.safe_load(f) for value in evolve_population.values(): value = np.array([value[k] for k in hyp_GA.keys()]) initial_values.append(list(value)) # If not resuming from a previous checkpoint, generate initial values from .yaml files in opt.evolve_population else: yaml_files = [f for f in os.listdir(opt.evolve_population) if f.endswith(".yaml")] for file_name in yaml_files: with open(os.path.join(opt.evolve_population, file_name)) as yaml_file: value = yaml.safe_load(yaml_file) value = np.array([value[k] for k in hyp_GA.keys()]) initial_values.append(list(value)) # Generate random values within the search space for the rest of the population if initial_values is None: population = [generate_individual(gene_ranges, len(hyp_GA)) for _ in range(pop_size)] elif pop_size > 1: population = [generate_individual(gene_ranges, len(hyp_GA)) for _ in range(pop_size - len(initial_values))] for initial_value in initial_values: population = [initial_value] + population # Run the genetic algorithm for a fixed number of generations list_keys = list(hyp_GA.keys()) for generation in range(opt.evolve): if generation >= 1: save_dict = {} for i in range(len(population)): little_dict = {list_keys[j]: float(population[i][j]) for j in range(len(population[i]))} save_dict[f"gen{str(generation)}number{str(i)}"] = little_dict with open(save_dir / "evolve_population.yaml", "w") as outfile: yaml.dump(save_dict, outfile, default_flow_style=False) # Adaptive elite size elite_size = min_elite_size + int((max_elite_size - min_elite_size) * (generation / opt.evolve)) # Evaluate the fitness of each individual in the population fitness_scores = [] for individual in population: for key, value in zip(hyp_GA.keys(), individual): hyp_GA[key] = value hyp.update(hyp_GA) results = train(hyp.copy(), opt, device, callbacks) callbacks = Callbacks() # Write mutation results keys = ( "metrics/precision", "metrics/recall", "metrics/mAP_0.5", "metrics/mAP_0.5:0.95", "val/box_loss", "val/obj_loss", "val/cls_loss", ) print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket) fitness_scores.append(results[2]) # Select the fittest individuals for reproduction using adaptive tournament selection selected_indices = [] for _ in range(pop_size - elite_size): # Adaptive tournament size tournament_size = max( max(2, tournament_size_min), int(min(tournament_size_max, pop_size) - (generation / (opt.evolve / 10))), ) # Perform tournament selection to choose the best individual tournament_indices = random.sample(range(pop_size), tournament_size) tournament_fitness = [fitness_scores[j] for j in tournament_indices] winner_index = tournament_indices[tournament_fitness.index(max(tournament_fitness))] selected_indices.append(winner_index) # Add the elite individuals to the selected indices elite_indices = [i for i in range(pop_size) if fitness_scores[i] in sorted(fitness_scores)[-elite_size:]] selected_indices.extend(elite_indices) # Create the next generation through crossover and mutation next_generation = [] for _ in range(pop_size): parent1_index = selected_indices[random.randint(0, pop_size - 1)] parent2_index = selected_indices[random.randint(0, pop_size - 1)] # Adaptive crossover rate crossover_rate = max( crossover_rate_min, min(crossover_rate_max, crossover_rate_max - (generation / opt.evolve)) ) if random.uniform(0, 1) < crossover_rate: crossover_point = random.randint(1, len(hyp_GA) - 1) child = population[parent1_index][:crossover_point] + population[parent2_index][crossover_point:] else: child = population[parent1_index] # Adaptive mutation rate mutation_rate = max( mutation_rate_min, min(mutation_rate_max, mutation_rate_max - (generation / opt.evolve)) ) for j in range(len(hyp_GA)): if random.uniform(0, 1) < mutation_rate: child[j] += random.uniform(-0.1, 0.1) child[j] = min(max(child[j], gene_ranges[j][0]), gene_ranges[j][1]) next_generation.append(child) # Replace the old population with the new generation population = next_generation # Print the best solution found best_index = fitness_scores.index(max(fitness_scores)) best_individual = population[best_index] print("Best solution found:", best_individual) # Plot results plot_evolve(evolve_csv) LOGGER.info( f'Hyperparameter evolution finished {opt.evolve} generations\n' f"Results saved to {colorstr('bold', save_dir)}\n" f'Usage example: $ python train.py --hyp {evolve_yaml}' ) def generate_individual(input_ranges, individual_length): """Generates a list of random values within specified input ranges for each gene in the individual.""" individual = [] for i in range(individual_length): lower_bound, upper_bound = input_ranges[i] individual.append(random.uniform(lower_bound, upper_bound)) return individual def run(**kwargs): """ Executes YOLOv5 training with given options, overriding with any kwargs provided. Example: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt') """ opt = parse_opt(True) for k, v in kwargs.items(): setattr(opt, k, v) main(opt) return opt if __name__ == "__main__": opt = parse_opt() main(opt)