# Ultralytics YOLOv5 🚀, AGPL-3.0 license """Activation functions.""" import torch import torch.nn as nn import torch.nn.functional as F class SiLU(nn.Module): @staticmethod def forward(x): """ Applies the Sigmoid-weighted Linear Unit (SiLU) activation function. https://arxiv.org/pdf/1606.08415.pdf. """ return x * torch.sigmoid(x) class Hardswish(nn.Module): @staticmethod def forward(x): """ Applies the Hardswish activation function, compatible with TorchScript, CoreML, and ONNX. Equivalent to x * F.hardsigmoid(x) """ return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX class Mish(nn.Module): """Mish activation https://github.com/digantamisra98/Mish.""" @staticmethod def forward(x): """Applies the Mish activation function, a smooth alternative to ReLU.""" return x * F.softplus(x).tanh() class MemoryEfficientMish(nn.Module): class F(torch.autograd.Function): @staticmethod def forward(ctx, x): """Applies the Mish activation function, a smooth ReLU alternative, to the input tensor `x`.""" ctx.save_for_backward(x) return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x))) @staticmethod def backward(ctx, grad_output): """Computes the gradient of the Mish activation function with respect to input `x`.""" x = ctx.saved_tensors[0] sx = torch.sigmoid(x) fx = F.softplus(x).tanh() return grad_output * (fx + x * sx * (1 - fx * fx)) def forward(self, x): """Applies the Mish activation function to the input tensor `x`.""" return self.F.apply(x) class FReLU(nn.Module): """FReLU activation https://arxiv.org/abs/2007.11824.""" def __init__(self, c1, k=3): # ch_in, kernel """Initializes FReLU activation with channel `c1` and kernel size `k`.""" super().__init__() self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False) self.bn = nn.BatchNorm2d(c1) def forward(self, x): """ Applies FReLU activation with max operation between input and BN-convolved input. https://arxiv.org/abs/2007.11824 """ return torch.max(x, self.bn(self.conv(x))) class AconC(nn.Module): """ ACON activation (activate or not) function. AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter See "Activate or Not: Learning Customized Activation" https://arxiv.org/pdf/2009.04759.pdf. """ def __init__(self, c1): """Initializes AconC with learnable parameters p1, p2, and beta for channel-wise activation control.""" super().__init__() self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1)) self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1)) self.beta = nn.Parameter(torch.ones(1, c1, 1, 1)) def forward(self, x): """Applies AconC activation function with learnable parameters for channel-wise control on input tensor x.""" dpx = (self.p1 - self.p2) * x return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x class MetaAconC(nn.Module): """ ACON activation (activate or not) function. AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter See "Activate or Not: Learning Customized Activation" https://arxiv.org/pdf/2009.04759.pdf. """ def __init__(self, c1, k=1, s=1, r=16): """Initializes MetaAconC with params: channel_in (c1), kernel size (k=1), stride (s=1), reduction (r=16).""" super().__init__() c2 = max(r, c1 // r) self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1)) self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1)) self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True) self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True) # self.bn1 = nn.BatchNorm2d(c2) # self.bn2 = nn.BatchNorm2d(c1) def forward(self, x): """Applies a forward pass transforming input `x` using learnable parameters and sigmoid activation.""" y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True) # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891 # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed dpx = (self.p1 - self.p2) * x return dpx * torch.sigmoid(beta * dpx) + self.p2 * x