# Ultralytics YOLOv5 🚀, AGPL-3.0 license """Plotting utils.""" import contextlib import math import os from copy import copy from pathlib import Path import cv2 import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sn import torch from PIL import Image, ImageDraw from scipy.ndimage.filters import gaussian_filter1d from ultralytics.utils.plotting import Annotator from utils import TryExcept, threaded from utils.general import LOGGER, clip_boxes, increment_path, xywh2xyxy, xyxy2xywh from utils.metrics import fitness # Settings RANK = int(os.getenv("RANK", -1)) matplotlib.rc("font", **{"size": 11}) matplotlib.use("Agg") # for writing to files only class Colors: # Ultralytics color palette https://ultralytics.com/ def __init__(self): """ Initializes the Colors class with a palette derived from Ultralytics color scheme, converting hex codes to RGB. Colors derived from `hex = matplotlib.colors.TABLEAU_COLORS.values()`. """ hexs = ( "FF3838", "FF9D97", "FF701F", "FFB21D", "CFD231", "48F90A", "92CC17", "3DDB86", "1A9334", "00D4BB", "2C99A8", "00C2FF", "344593", "6473FF", "0018EC", "8438FF", "520085", "CB38FF", "FF95C8", "FF37C7", ) self.palette = [self.hex2rgb(f"#{c}") for c in hexs] self.n = len(self.palette) def __call__(self, i, bgr=False): """Returns color from palette by index `i`, in BGR format if `bgr=True`, else RGB; `i` is an integer index.""" c = self.palette[int(i) % self.n] return (c[2], c[1], c[0]) if bgr else c @staticmethod def hex2rgb(h): """Converts hexadecimal color `h` to an RGB tuple (PIL-compatible) with order (R, G, B).""" return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4)) colors = Colors() # create instance for 'from utils.plots import colors' def feature_visualization(x, module_type, stage, n=32, save_dir=Path("runs/detect/exp")): """ x: Features to be visualized module_type: Module type stage: Module stage within model n: Maximum number of feature maps to plot save_dir: Directory to save results """ if ("Detect" not in module_type) and ( "Segment" not in module_type ): # 'Detect' for Object Detect task,'Segment' for Segment task batch, channels, height, width = x.shape # batch, channels, height, width if height > 1 and width > 1: f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels n = min(n, channels) # number of plots fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols ax = ax.ravel() plt.subplots_adjust(wspace=0.05, hspace=0.05) for i in range(n): ax[i].imshow(blocks[i].squeeze()) # cmap='gray' ax[i].axis("off") LOGGER.info(f"Saving {f}... ({n}/{channels})") plt.savefig(f, dpi=300, bbox_inches="tight") plt.close() np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy()) # npy save def hist2d(x, y, n=100): """ Generates a logarithmic 2D histogram, useful for visualizing label or evolution distributions. Used in used in labels.png and evolve.png. """ xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) return np.log(hist[xidx, yidx]) def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): """Applies a low-pass Butterworth filter to `data` with specified `cutoff`, `fs`, and `order`.""" from scipy.signal import butter, filtfilt # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy def butter_lowpass(cutoff, fs, order): nyq = 0.5 * fs normal_cutoff = cutoff / nyq return butter(order, normal_cutoff, btype="low", analog=False) b, a = butter_lowpass(cutoff, fs, order=order) return filtfilt(b, a, data) # forward-backward filter def output_to_target(output, max_det=300): """Converts YOLOv5 model output to [batch_id, class_id, x, y, w, h, conf] format for plotting, limiting detections to `max_det`. """ targets = [] for i, o in enumerate(output): box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1) j = torch.full((conf.shape[0], 1), i) targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1)) return torch.cat(targets, 0).numpy() @threaded def plot_images(images, targets, paths=None, fname="images.jpg", names=None): """Plots an image grid with labels from YOLOv5 predictions or targets, saving to `fname`.""" if isinstance(images, torch.Tensor): images = images.cpu().float().numpy() if isinstance(targets, torch.Tensor): targets = targets.cpu().numpy() max_size = 1920 # max image size max_subplots = 16 # max image subplots, i.e. 4x4 bs, _, h, w = images.shape # batch size, _, height, width bs = min(bs, max_subplots) # limit plot images ns = np.ceil(bs**0.5) # number of subplots (square) if np.max(images[0]) <= 1: images *= 255 # de-normalise (optional) # Build Image mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init for i, im in enumerate(images): if i == max_subplots: # if last batch has fewer images than we expect break x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin im = im.transpose(1, 2, 0) mosaic[y : y + h, x : x + w, :] = im # Resize (optional) scale = max_size / ns / max(h, w) if scale < 1: h = math.ceil(scale * h) w = math.ceil(scale * w) mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h))) # Annotate fs = int((h + w) * ns * 0.01) # font size annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names) for i in range(i + 1): x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders if paths: annotator.text([x + 5, y + 5], text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames if len(targets) > 0: ti = targets[targets[:, 0] == i] # image targets boxes = xywh2xyxy(ti[:, 2:6]).T classes = ti[:, 1].astype("int") labels = ti.shape[1] == 6 # labels if no conf column conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred) if boxes.shape[1]: if boxes.max() <= 1.01: # if normalized with tolerance 0.01 boxes[[0, 2]] *= w # scale to pixels boxes[[1, 3]] *= h elif scale < 1: # absolute coords need scale if image scales boxes *= scale boxes[[0, 2]] += x boxes[[1, 3]] += y for j, box in enumerate(boxes.T.tolist()): cls = classes[j] color = colors(cls) cls = names[cls] if names else cls if labels or conf[j] > 0.25: # 0.25 conf thresh label = f"{cls}" if labels else f"{cls} {conf[j]:.1f}" annotator.box_label(box, label, color=color) annotator.im.save(fname) # save def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=""): """Plots learning rate schedule for given optimizer and scheduler, saving plot to `save_dir`.""" optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals y = [] for _ in range(epochs): scheduler.step() y.append(optimizer.param_groups[0]["lr"]) plt.plot(y, ".-", label="LR") plt.xlabel("epoch") plt.ylabel("LR") plt.grid() plt.xlim(0, epochs) plt.ylim(0) plt.savefig(Path(save_dir) / "LR.png", dpi=200) plt.close() def plot_val_txt(): """ Plots 2D and 1D histograms of bounding box centers from 'val.txt' using matplotlib, saving as 'hist2d.png' and 'hist1d.png'. Example: from utils.plots import *; plot_val() """ x = np.loadtxt("val.txt", dtype=np.float32) box = xyxy2xywh(x[:, :4]) cx, cy = box[:, 0], box[:, 1] fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True) ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) ax.set_aspect("equal") plt.savefig("hist2d.png", dpi=300) fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True) ax[0].hist(cx, bins=600) ax[1].hist(cy, bins=600) plt.savefig("hist1d.png", dpi=200) def plot_targets_txt(): """ Plots histograms of object detection targets from 'targets.txt', saving the figure as 'targets.jpg'. Example: from utils.plots import *; plot_targets_txt() """ x = np.loadtxt("targets.txt", dtype=np.float32).T s = ["x targets", "y targets", "width targets", "height targets"] fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) ax = ax.ravel() for i in range(4): ax[i].hist(x[i], bins=100, label=f"{x[i].mean():.3g} +/- {x[i].std():.3g}") ax[i].legend() ax[i].set_title(s[i]) plt.savefig("targets.jpg", dpi=200) def plot_val_study(file="", dir="", x=None): """ Plots validation study results from 'study*.txt' files in a directory or a specific file, comparing model performance and speed. Example: from utils.plots import *; plot_val_study() """ save_dir = Path(file).parent if file else Path(dir) plot2 = False # plot additional results if plot2: ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel() fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True) # for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]: for f in sorted(save_dir.glob("study*.txt")): y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T x = np.arange(y.shape[1]) if x is None else np.array(x) if plot2: s = ["P", "R", "mAP@.5", "mAP@.5:.95", "t_preprocess (ms/img)", "t_inference (ms/img)", "t_NMS (ms/img)"] for i in range(7): ax[i].plot(x, y[i], ".-", linewidth=2, markersize=8) ax[i].set_title(s[i]) j = y[3].argmax() + 1 ax2.plot( y[5, 1:j], y[3, 1:j] * 1e2, ".-", linewidth=2, markersize=8, label=f.stem.replace("study_coco_", "").replace("yolo", "YOLO"), ) ax2.plot( 1e3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5], "k.-", linewidth=2, markersize=8, alpha=0.25, label="EfficientDet", ) ax2.grid(alpha=0.2) ax2.set_yticks(np.arange(20, 60, 5)) ax2.set_xlim(0, 57) ax2.set_ylim(25, 55) ax2.set_xlabel("GPU Speed (ms/img)") ax2.set_ylabel("COCO AP val") ax2.legend(loc="lower right") f = save_dir / "study.png" print(f"Saving {f}...") plt.savefig(f, dpi=300) @TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395 def plot_labels(labels, names=(), save_dir=Path("")): """Plots dataset labels, saving correlogram and label images, handles classes, and visualizes bounding boxes.""" LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ") c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes nc = int(c.max() + 1) # number of classes x = pd.DataFrame(b.transpose(), columns=["x", "y", "width", "height"]) # seaborn correlogram sn.pairplot(x, corner=True, diag_kind="auto", kind="hist", diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9)) plt.savefig(save_dir / "labels_correlogram.jpg", dpi=200) plt.close() # matplotlib labels matplotlib.use("svg") # faster ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) with contextlib.suppress(Exception): # color histogram bars by class [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195 ax[0].set_ylabel("instances") if 0 < len(names) < 30: ax[0].set_xticks(range(len(names))) ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10) else: ax[0].set_xlabel("classes") sn.histplot(x, x="x", y="y", ax=ax[2], bins=50, pmax=0.9) sn.histplot(x, x="width", y="height", ax=ax[3], bins=50, pmax=0.9) # rectangles labels[:, 1:3] = 0.5 # center labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000 img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255) for cls, *box in labels[:1000]: ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot ax[1].imshow(img) ax[1].axis("off") for a in [0, 1, 2, 3]: for s in ["top", "right", "left", "bottom"]: ax[a].spines[s].set_visible(False) plt.savefig(save_dir / "labels.jpg", dpi=200) matplotlib.use("Agg") plt.close() def imshow_cls(im, labels=None, pred=None, names=None, nmax=25, verbose=False, f=Path("images.jpg")): """Displays a grid of images with optional labels and predictions, saving to a file.""" from utils.augmentations import denormalize names = names or [f"class{i}" for i in range(1000)] blocks = torch.chunk( denormalize(im.clone()).cpu().float(), len(im), dim=0 ) # select batch index 0, block by channels n = min(len(blocks), nmax) # number of plots m = min(8, round(n**0.5)) # 8 x 8 default fig, ax = plt.subplots(math.ceil(n / m), m) # 8 rows x n/8 cols ax = ax.ravel() if m > 1 else [ax] # plt.subplots_adjust(wspace=0.05, hspace=0.05) for i in range(n): ax[i].imshow(blocks[i].squeeze().permute((1, 2, 0)).numpy().clip(0.0, 1.0)) ax[i].axis("off") if labels is not None: s = names[labels[i]] + (f"—{names[pred[i]]}" if pred is not None else "") ax[i].set_title(s, fontsize=8, verticalalignment="top") plt.savefig(f, dpi=300, bbox_inches="tight") plt.close() if verbose: LOGGER.info(f"Saving {f}") if labels is not None: LOGGER.info("True: " + " ".join(f"{names[i]:3s}" for i in labels[:nmax])) if pred is not None: LOGGER.info("Predicted:" + " ".join(f"{names[i]:3s}" for i in pred[:nmax])) return f def plot_evolve(evolve_csv="path/to/evolve.csv"): """ Plots hyperparameter evolution results from a given CSV, saving the plot and displaying best results. Example: from utils.plots import *; plot_evolve() """ evolve_csv = Path(evolve_csv) data = pd.read_csv(evolve_csv) keys = [x.strip() for x in data.columns] x = data.values f = fitness(x) j = np.argmax(f) # max fitness index plt.figure(figsize=(10, 12), tight_layout=True) matplotlib.rc("font", **{"size": 8}) print(f"Best results from row {j} of {evolve_csv}:") for i, k in enumerate(keys[7:]): v = x[:, 7 + i] mu = v[j] # best single result plt.subplot(6, 5, i + 1) plt.scatter(v, f, c=hist2d(v, f, 20), cmap="viridis", alpha=0.8, edgecolors="none") plt.plot(mu, f.max(), "k+", markersize=15) plt.title(f"{k} = {mu:.3g}", fontdict={"size": 9}) # limit to 40 characters if i % 5 != 0: plt.yticks([]) print(f"{k:>15}: {mu:.3g}") f = evolve_csv.with_suffix(".png") # filename plt.savefig(f, dpi=200) plt.close() print(f"Saved {f}") def plot_results(file="path/to/results.csv", dir=""): """ Plots training results from a 'results.csv' file; accepts file path and directory as arguments. Example: from utils.plots import *; plot_results('path/to/results.csv') """ save_dir = Path(file).parent if file else Path(dir) fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) ax = ax.ravel() files = list(save_dir.glob("results*.csv")) assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot." for f in files: try: data = pd.read_csv(f) s = [x.strip() for x in data.columns] x = data.values[:, 0] for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]): y = data.values[:, j].astype("float") # y[y == 0] = np.nan # don't show zero values ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=8) # actual results ax[i].plot(x, gaussian_filter1d(y, sigma=3), ":", label="smooth", linewidth=2) # smoothing line ax[i].set_title(s[j], fontsize=12) # if j in [8, 9, 10]: # share train and val loss y axes # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) except Exception as e: LOGGER.info(f"Warning: Plotting error for {f}: {e}") ax[1].legend() fig.savefig(save_dir / "results.png", dpi=200) plt.close() def profile_idetection(start=0, stop=0, labels=(), save_dir=""): """ Plots per-image iDetection logs, comparing metrics like storage and performance over time. Example: from utils.plots import *; profile_idetection() """ ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel() s = ["Images", "Free Storage (GB)", "RAM Usage (GB)", "Battery", "dt_raw (ms)", "dt_smooth (ms)", "real-world FPS"] files = list(Path(save_dir).glob("frames*.txt")) for fi, f in enumerate(files): try: results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows n = results.shape[1] # number of rows x = np.arange(start, min(stop, n) if stop else n) results = results[:, x] t = results[0] - results[0].min() # set t0=0s results[0] = x for i, a in enumerate(ax): if i < len(results): label = labels[fi] if len(labels) else f.stem.replace("frames_", "") a.plot(t, results[i], marker=".", label=label, linewidth=1, markersize=5) a.set_title(s[i]) a.set_xlabel("time (s)") # if fi == len(files) - 1: # a.set_ylim(bottom=0) for side in ["top", "right"]: a.spines[side].set_visible(False) else: a.remove() except Exception as e: print(f"Warning: Plotting error for {f}; {e}") ax[1].legend() plt.savefig(Path(save_dir) / "idetection_profile.png", dpi=200) def save_one_box(xyxy, im, file=Path("im.jpg"), gain=1.02, pad=10, square=False, BGR=False, save=True): """Crops and saves an image from bounding box `xyxy`, applied with `gain` and `pad`, optionally squares and adjusts for BGR. """ xyxy = torch.tensor(xyxy).view(-1, 4) b = xyxy2xywh(xyxy) # boxes if square: b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad xyxy = xywh2xyxy(b).long() clip_boxes(xyxy, im.shape) crop = im[int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR else -1)] if save: file.parent.mkdir(parents=True, exist_ok=True) # make directory f = str(increment_path(file).with_suffix(".jpg")) # cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB return crop